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Use of Phone Sensors to Enhance Distracted
Pedestrians’ Safety
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Abstract—Studies have shown that using smartphones while walking—called distracted walking—significantly increases the risk of
pedestrians colliding with dangerous objects. In this paper, we explore how to mitigate this problem by exploiting the phone’s built-in
sensors only and developing an application called BumpAlert. This app provides a generic solution without requiring any prior
knowledge of the user’s surroundings by estimating distances to nearby objects using the phone’s speakers and microphones. This
process is enhanced further by using the images acquired from the phone’s rear camera, when necessary. We have evaluated
BumpAlert under a variety of settings ranging from aisle to outdoor environments with walls, pillars, signboards, dustbins and people,
etc., that are common in our daily surroundings. Our evaluation has shown an average accuracy of BumpAlert to be higher than 95%
with a less than 2% false-positive rate to detect frontal objects 2—4m away, which suffices for the user to react and avoid collision. Even

though BumpAlert is unable to detect all dangerous situations, most participants of our user study feel safer when they walk with
BumpAlert enabled. Integrating our current design of BumpAlert with other safety systems can provide a practical solution for

protecting distracted pedestrians.

Index Terms—Mobile sensing and computing, pervasive computing, smartphones, distracted pedestrians.
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1 INTRODUCTION

HE risk of injury is reported to increase significantly

when pedestrians are distracted by their use of smart-
phones while walking, i.e., distracted walking. Pedestrians
are known to notice 50% less environmental changes when
they text on their phone while walking [1]. According to the
number of emergency room visits reported in the United
States in 2010, the rate of accidents due to pedestrians’ use of
smartphone has grown 10x in 5 years [2]. This accident rate
is likely to increase sharply with the increase of distracted
smartphone users. Such accidents can also be severe; for
example, people may walk distracted into the middle of the
road and get knocked down by an oncoming car, or may
bump into trees or utility poles causing head injuries. Rec-
ognizing this growing risk of cellphone users, in Chongqing,
a sprawling city in central China, authorities have even
set up a “cellphone lane” where people focusing on their
phones can stroll without running into anyone or object
not holding/using a phone [3]. Also, Taiwan government
is about to establish a law to fine distracted pedestrians $10
to reduce the accident rate.

Reducing this risk by using the phone itself without
requiring any additional sensors or infrastructural support
has been drawing significant attention from both research
and industry communities, but has not yet produced a
satisfactory solution. Some systems can identify cars by
building an image classifier with the images of frontal cars,
but cannot detect any object beyond the cars [4]. Some others
focus on preventing people from losing steps when they
walk through the transitions between pathway and road [5].
While existing approaches address various specific aspects,
their reliance on strong assumptions, like the shape or color
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of objects, prevent them from detecting general obstacles in
the user’s path. To fill this gap, we propose BumpAlert,
which addresses an important but unexplored problem:
“can commodity phones determine if the user is walking
toward (dangerous) obstacles without assuming any prior
knowledge of the objects?” Guaranteeing the elimination
of all dangerous incidents is the ultimate goal of all safety
systems but very hard, if not impossible, to achieve. Like
most existing approaches, BumpAlert is an add-on phone
function to enhance the safety of distracted pedestrians that
aims to reduce the accident rate as much as possible at
reasonable cost/overhead.

It is challenging to detect obstacles by utilizing only
the built-in sensors in commodity phones. To achieve high
detection accuracy at low computation and energy costs,
we exploit several phone sensors. BumpAlert uses the
phone’s speakers and microphones to estimate the distance
between the user and nearby objects, and also uses the
phone’s rear camera to validate the detected objects, only
when necessary. Several novel algorithms are developed
and implemented by exploiting these sensor inputs. For ex-
ample, the false detections caused by omnidirectional phone
speakers/microphones are removed by a novel motion filter
that tracks the user’s trajectory using inertial sensors. Also,
the distances to obstacles can be estimated by a single
camera without depth perception since the phone’s height
has already been determined by the BumpAlert’s acoustic
detector. This paper makes several contributions in that
BumpAlert

o is the first phone app to “actively” monitor the en-
vironment and alert distracted walkers in real time;

 relies only on sensors available in commodity smart-
phones, without requiring any specialized sensors;
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e does not rely on any a priori knowledge of obstacles,
thus offering a generic solution applicable to a broad
range of situations/environments; and

e consumes only a small fraction of resources, thus
unaffecting users’ experience in using their phones.

BumpAlert is implemented on the Android platform
as an app using the OpenCV library and the Java Na-
tive Interface. Our evaluation results show its capability
to detect objects with higher than 95% accuracy in typical
outdoor/indoor environments and consume around 8% of
battery power per hour while running as a mobile app.

We have conducted a user study of BumpAlert in a
controlled environment. Although BumpAlert does not
guarantee safety for all possible dangerous scenarios that
distracted walkers might encounter, our user study shows
that 71% of the participants agree that BumpAlert’s detec-
tion accuracy is useful and 86% of them are willing to accept
BumpAlert’s energy cost for detecting dangerous obstacles
with a high probability. A user-interface study based on
Microsoft Kinect [6] also corroborates that a system display-
ing frontal obstacles can make distracted walkers feel safer
and more confident. Moreover, 43% of the participants in
our study have experienced bumping into objects during
distracted walking, and 86% of them have heard others col-
lided with obstacles. These results are consistent with other
studies, indicating the real danger of distracted walking. A
demo video of BumpAlert can be found from [7].

The remainder of this paper is organized as follows. Sec-
tion 2 summarizes the related work in accident prevention
systems. Section 3 gives an overview of BumpAlert and
Section 4 describes the implementation details. Sections 5
and 6 provide our experimental evaluation and user study,
respectively. The paper concludes with Section 9.

2 RELATED WORK

Obstacle detection and avoidance have been an active area
of research [8], [9], [10], [11] in the field of intelligent vehi-
cles and robotics. Of particular interest is the active safety
systems deployed in cars to protect pedestrians. However,
most of these systems require expensive devices such as
RADAR, LIDAR, SONAR, and multiple cameras to detect
pedestrians and predict their movement. These solutions are
not easily wearable by people as they are usually heavy or
require advanced sensors, but they can be used as a basis
for signal processing, especially for camera imaging and
SONAR processing. Note that some robots might use cheap
sensors to detect obstacles, but these sensors are still spe-
cially designed for this purpose. For example, sonars used
in robots are directional while phone speaker/microphone
are not. Another direction of study focuses on detection of
pedestrian(s) with the help of infrastructure, such as pre-
deployed cameras at intersections [12]. However, the same
cannot be assumed in mobile phone environments.

Instead of using advanced/expensive sensors, one can
find and exploit various built-in sensors of smartphones.
These include accelerometers which sense the phone’s
movement, gyroscopes which detect the phone’s orienta-
tion, cameras and microphones which capture images and
record sound in the surrounding environment. These sen-
sors have been utilized to develop various apps, such as
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Fig. 1. System blocks of BumpAlert. Multiple sensing components are
utilized to optimize the detection performance.
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indoor phone localization [13], [14], context-aware comput-
ing [15], [16], and human-computer interfaces [17], [18].

Although there exist a myriad of apps that exploit sen-
sors to perform various functions on the phone, little has
been done on distracted walkers’ safety, despite its rapidly
growing importance. A passive approach using the phone’s
rear camera was proposed in [19], [20] to take and display
the frontal image as the background of apps. Since it is
a passive solution, the user still has to be responsible for
identifying and avoiding the obstacles shown on the screen
of his phone. However, users usually focus on the task (e.g.,
playing a game) at hand and may not pay attention to the
changes in the background of the app they are running.
Moreover, there are also apps, such as games, that do not
allow the change of background.

There are also other mobile apps that sense environ-
ments and provide active feedbacks. WalkSafe [4] is able
to identify the frontal view of an (approaching) vehicle by
using the phone’s rear camera when pedestrians are making
telephone calls while crossing the road/street. LookUp [5]
monitors the road transitions, such as the height change
from a sidewalk to a street, by connecting inertial sensors
mounted in shoes. Both apps target the scenarios parallel to
BumpAlert, and it is possible to integrate BumpAlert with
them to enhance pedestrians’ safety. CrashAlert [6] targets
the same scenario as ours, detecting obstacles when users
are distracted-walking. However, it mainly focuses on the
design of walking user interface (WUI). The functionality of
obstacle detection in CrashAlert is delegated to Microsoft
Kinect, which is not available in commodity phones. In this
paper, we explore how to detect and avoid objects in front
of a distracted walker by using only the phone’s built-in
sensors and building and evaluating a mobile application
called BumpAlert. Even though BumpAlert is unable to
detect all dangerous situations (see Section 7), it has been
shown to be able to detect most dangerous objects for dis-
tracted pedestrians, ranging from glass doors, sign boards,
to a small parapet wall.

3 BUMPALERT

As shown in Fig. 1, BumpAlert consists of four main
components that interact with each other: (1) acoustic detector
that uses sound to estimate the distances between the user
and nearby objects; (2) visual detector that determines the
presence of dangerous objects using the rear camera; (3)
motion estimator that determines the user’s walking speed;
and (4) fusion algorithm that combines information from all
the other components and generates an alert for the user
when a dangerous object is detected nearby.
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Algorithm 1 Acoustic Detection

Input: acoustic signal array at the n-th detection: S,
peak window: winpeqr, walking speed: w, threshold coeffi-
cient: «
Output: detection result: Dycc
1: S + matched_filter(bandpass_filter(S5))
2: noise < estimate_noise(S) & thr <+ a(noisemean+noisestd)
3: Pn, D, + ¢ & peakMax, peakOf fset < 0
4: for i from winpear/2 to len(S) — winpear/2 — 1 do

5 isPeak < True
6:  for j from i — winpeqk/2 t0 i + Winpeqr/2 do
7: if S[j] > S[¢] then
8: isPeak < False
9: break
10:  if isPeak and S[i] > thr then
11: P, + P, U1
12: if S[i] > peakMazx then
13: peakOf fset < i
14: peakMax <+ S[i]
15: forp € P, do
16: d= Speedsound(p - peakOffset)/(27’at€sampze)
17: D, «+ D, Ud
18: Dgsyce < motion_filter(D,,, D1, ..., Dyp—s,0,w)
19: return Dy

- -- Signal received
Signal filtered
—— Signal matched

O Peaks detected
—— Threshold

Normalized magnitude

300 200 500 500

Samples
Fig. 2. Example measurement of acoustic detection. Peaks of signals
passing the matched filter indicate the reception of reflections from
objects. The first and strongest peak represents the sound directly
transmitted from phone speakers.
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The acoustic detector borrows ideas from sonar sensors
for object detection. The speaker sends 10 periods of a
sine wave at a frequency of 11,025Hz and picks up its
reflections through the phone’s microphones. In order to
make BumpAlert compatible with most commodity smart-
phones, the signal sent is sampled at 44.1kHz and two con-
secutive signals are transmitted with a 100ms separation to
differentiate their reflections at the microphones/receivers.
Note that this setting is designed to be widely supported by
commodity phones and can be adapted as phone hardware
improves. For example, Section 8 describes the extended set-
ting designed for Galaxy Note4, which provides reasonably
good detection accuracy with inaudible sound.

To identify the signals reflected from objects, the
recorded signal is first passed through a bandpass FIR
(Finite Impulse Response) filter and then through the cor-
responding matched filter as shown in Algorithm 1. At
the n-th record, the highest-amplitude samples within a
moving window are marked as peaks, P,, if the signal’s
amplitude exceeds a threshold, thr. Due to the automatic
gain control (AGC) in microphones and the different levels

Acoustic Detector

3

of environmental noise, thr is adjusted to the received
noise level. The noise is observed from 600 samples before
the sent signal is received, with the threshold set to «
(mean(noise)+std(noise)) where « is set to 4 in BumpAlert.
The width of the moving window, winpeqk, is set to 40
samples, which is equal to the number of samples in the
transmitted signal. The maximum resolution that can be dis-
cerned with these chosen parameters is about 15cm, which
equals the product of the signal’s duration and the speed of
sound, so objects within 15cm of each other will be classified
as a single object. Fig. 2 shows an instance of acoustic
detection. The first peak indicates the sound sent out of the
speaker, while the second peak is the reflection from the
human body 28cm away, and the third peak is the reflection
from the floor 142cm below the speaker. According to the
ground truth, the error is less than 5cm in this case.

The signal used should be lower than a half of the
sampling frequency for its accurate recovery. Ideally, a
higher frequency is preferred because the sound of such a
frequency will be less audible (hence less annoying) to the
user, but the sent and reflected signals also degrade more
at higher frequencies. On the other hand, decreasing the
signal frequency will increase the time necessary to send a
sufficient number of periods of the signal, which will lower
the detection resolution. Note that there is no need to use
a lower frequency signal. A lower frequency signal might
incur less decay during its propagation, and can thus receive
the reflections from farther-away objects. However, it also
increases the time to wait for all reflections before sending
the next sensing signal. There are also more environmental
noises in the lower frequency band. According to our ex-
perimental results, the signal frequency of 11025Hz suffices
to capture reflections within 2—4m, and reflections from
objects more than 10m away are too weak to be detected
for most devices we tested. This is what BumpAlert needs,
enabling detection of nearby obstacles, and ensuring that all
significant reflections are received within 100ms. Note that
the current design of BumpAlert does not cope with the
interference caused by multiple nearby devices. However,
this problem can be avoided by utilizing existing multiple
wireless access protocols. For example, different devices can
emit different frequencies of sound (FDMA) or different
kinds of sound (CDMA) to ensure the emitted signals to
have minimal correlation with each other. Testing such
advanced settings is part of our future work.

The distance between the user and each object is com-
puted as 1/2 the traveling time of the signal reflected from
the objectxthe speed of sound (331m/s). The performance
of this scheme depends strongly on the ability to accurately
record the time when signals are sent and their reflections
are received. Errors of a few milliseconds will cause an
estimation error of several meters due to the high speed
of sound. Thus, any error between timestamps caused by
non-real-time phone operating systems is unacceptable. We
circumvent this problem by recording the time when the
(reflected) signal is sent (received) and then computing the
time difference between the sent and the reflected signals in
terms of the number of consecutive samples [21]. As shown
in Fig. 2, the signal identified with the largest magnitude,
peakMax, is regarded as the sent signal, ie. the signal
directly going through the phone’s body to its microphone.
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(a) Walking towards a wall

Fig. 3. Distances to objects estimated by acoustic/visual detectors when a user walks toward/from a wall. A user is guided to walk towards
(away) a wall from a location 10m away (1m behind). The circles and crosses represent the estimated distances to objects (including the wall)
detected by our acoustic/visual detectors. The dotted lines represent the real distance to the target wall, which is collected via timestamped traces

(b) Walking away from a wall (c) Walking towards a wall in an aisle

when users walk through pre-installed tags on the ground.

Average
image

Indirect path

Direct path

(a) Example posture and multipath reflections (b) Average of taken images

Fig. 4. Assumed holding posture and its effect on detections. A
wrong acoustic detection with a longer estimated distance happens due
to multipath reflections. The marked area of images taken in this posture
includes the ground texture with a high probability.

In Algorithm 1, this is used as the reference, peakOffset, for
computing the time difference between the sent and the
reflected signals. As the detection results shown in Fig. 3(a),
when a user walks toward a wall (obstacle) from a 10m-
away position, our acoustic detector is able to identify the
reflection (as the diagonal green hollow circles) from the
wall when the users are 5m away (as marked with the
dotted line) at time 5. In this figure, the constantly appearing
objects (two prominent vertical green hollow circles) esti-
mated to be 30cm and 150cm away are, respectively, the
human body and the floor.

One limitation of acoustic detection is that phone speak-
ers and microphones are ommni-directional, and hence the
direction of the obstacle cannot be resolved. Another related
problem is reception of multi-path reflections. The signal
received by a microphone is actually a combination of the
sent signal and multiple reflections of the same signal. Thus,
an object actually 50cm away may cause a false detection
as 150cm away due to multi-path reflections as shown in
Fig. 4(a). This effect is severe, especially in an indoor envi-
ronment where objects like walls and pillars cause multi-
path reflections.

However, these two problems are greatly reduced by the
BumpAlert’s need to detect only the closest object, i.e.,
the shortest-path reflection. Most reflections from objects
behind the user are also absorbed/blocked by the user’s
body which is akin to the property of WiFi signals being
blocked by the mobile users [22], [23]. As shown in Fig. 3(b)
where the user is walking away from a wall, the acoustic

Algorithm 2 : Motion Filter

Input: detection distance of the n-th detection: D,
previous § detections D,_1,...,Dn_s5, depth: §, walking

speed: w
Output: results passing motion filter: Dycc
1: Dsyce + @
2: for d € D,, do
33 r<«0
4: for ifrom1tod do
5: dest < d+1 X w X periodgetection
6: for dnistory € Dn—i do
7: if ‘dest - dhista'ryl < WiNlerror then
8: r«r+1/§
9:  if > roucc then
10: Dgyee +— D Ud

11: return Dgycc

detector does not detect any prominent peaks of reflections
even if the wall is just Im behind the user at time 0. This
feature helps the acoustic detector prevent from making
wrong estimations when the object is actually behind the
user. However, the detection results will still be affected by
reflections from the side objects, such as walls and pillars.
As shown in Fig. 3(c), the same experiment of a user walking
toward a wall from 10m away is repeated but in a narrow
(5m-wide) aisle. False detections are made due to side walls
(vertical green hollow circles within a 2 — 6m range), making
it difficult for BumpAlert to identify the real obstacle, i.e.,
the wall in front of the user.

To improve the detection results further, we introduce
a motion filter that eliminates the detected reflections with
0 relative speed to the user. This filter is inspired by the
results shown in Fig. 3, where all detected objects showing
a constant distance to the users over time (vertically aligned
circles) are unnecessary for the functionality of BumpAlert
since it is impossible for the users to bump into those
objects without any relative speed to them. The user’s
walking speed is estimated by the phone’s accelerometer
as described later. The high-level goal of this motion filter is
to remove detections with relative speeds unmatched with
the user’s walking speed. Thus, given the user’s walking
speed, w, and a history of § previous detection results,
Dy _1 ~ D,_;, only those reflections from objects moving
at similar walking speeds are classified as the true obstacles
toward which the user is walking.
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Fig. 5. Visual detection. Images take by phone rear cameras are
smoothed, transferred to HSV color scheme, back projected, and then
filtered out blob detections.

As shown in Algorithm 2, the current detection, d € D,,,
is projected backward based on the user’s walking speed,
1 X W X perioddetection, yielding des:. This is compared with
the previously detected position of the object, dpistory, and
the probability of the presence of an object increases if
the history matches the projection, i.e., |dest — dpistory| <
winderror. Yielding a probability, 7, higher than a given
ratio, 7sycc, is said to pass the motion filter and identified as
a positive detection. With this additional filtering, the reflec-
tions caused by objects without any matching relative speed,
such as floor or side walls, can be filtered out as shown in
Fig. 3(a). In this figure, detections passing a motion filter
(marked as red solid circles) represent only the signals from
target obstacles (i.e., the wall users walking towards) while
the detections caused by human body, floor, and multi-path
reflections inside the wall are excluded. A similar effect can
also be found in Fig. 3(c), where most reflections from side
walls are also filtered out. However, the noisy detections in
a cluttered environment cannot be completely eliminated by
the motion filter. As shown in the same figure, more than 10
false detections caused by side objects pass our motion filter
since those objects are too close to each other, resulting in
a significant number of false positives which might annoy
users. These false positives are reduced/removed by using
the visual detector to ensure the detected object being in
front of the user.

3.2 Visual Detector

To overcome the inherent limitation of acoustic detection,
an additional sensing layer is added using the phone’s rear
camera. This removes the false positives and provides infor-
mation of the object’s direction. BumpAlert assumes that
users will hold their phones in a typical position as shown
in Fig. 4, and the rear camera’s line of sight will be clear to
capture objects in front of the user. BumpAlert can send the
users texts or generate vibrations to maintain their phone
tilt in its operational range. We have conducted a detailed
survey of users’ willingness to maintain their average phone
tilt required for the functionality of BumpAlert. See the
details of this user study in Sections 5 and 6.

There are two main challenges to detect objects in the
rear camera view. The first is to determine the presence of
objects and the second is to determine the distance between
the user and the objects due to the lack of depth perception
in the images taken by only a single camera. BumpAlert
does not use any a priori information, such as the shape
and color, to identify the presence of objects. Having no
prior knowledge makes BumpAlert more general, enabling
detection of any type of dangerous objects and preventing

5

collision with them. Detecting objects without any prior
knowledge is difficult, though. The goal of BumpAlert is,
however, not to identify every object in the scene but to
know if there is any nearby object in front of the user. Specif-
ically, BumpAlert adopts the back-projection technique in
[24], [25] to identify the objects that are different from the
ground/floor. Its idea is to use the texture of the ground
surface where the user is walking on and to compare it with
the rest of the image, looking for textural similarities and
dissimilarities. As shown in Fig. 5, a 10x 10 blurring filter is
used first to reduce the noise from the image, and the image
is then transformed into the HSV space. The back-projection
algorithm is applied to determine which parts of the image
are not related to the ground/floor texture. The last step
is to apply an erosion filter to remove any residual error
from the back-projection algorithm. After completing these
steps, blobs with areas larger than a predefined threshold
are identified as obstacles and the point closest to the bottom
of the image is returned as the closest obstacle.

Some astute readers might observe that the key assump-
tion in the back projection is the knowledge of ground/floor
texture. In case an object is erroneously included in the
region as a reference of ground/floor, the object will not
be seen by our visual detector because the back projection
classifies the object as a part of ground/floor. Identifying the
ground/floor in an arbitrary image is difficult, but does not
cause problems to BumpAlert. Images are only taken when
users are walking and using their phones at an assumed
position as shown in Fig. 4. Under this assumption, we can
ensure that a specific area in the image can represent the
information of the ground/floor with a high probability. In
order to determine this area, we conducted an experiment
with 10 participants. They were requested to take pictures
while using their phones at a comfortable position 2m away
from a door. The average of all the pictures taken is shown
in Fig. 4(b), where the dark area indicates the area consisting
of ground/floor. The size of that area we choose is 96
pixelsx144 pixels located 32 pixels above the bottom of a
240x320 image. The area is chosen above the bottom of the
image since it is possible to include the user’s feet in the
bottom area.

After the closest point of objects in the image is iden-
tified, a pixel difference from the detection point to the
bottom of the image is defined as p, and the pixel-
to-real-world distance transform is computed as d =
pixel_to_distance(p, h, t,), where d is the real-world dis-
tance to the detected object, h, and ¢, represent the height
and the tilt of the user’s phone with respect to the ground.
A detailed derivation of this transform based on a camera
projection model can be found in [26]. This computation is
possible only if the height and tilt of the phone are known.
As these two parameters are not fixed when people are
walking, a method is needed to estimate them online. The
phone’s tilt can be directly acquired from the accelerometers
as t, = cos~(acc, /accmay), where acc, is the acceleration
orthogonal to the phone’s surface and accyq4 is the magni-
tude of overall acceleration caused by the user’s motion or
the earth gravity. In contrast to derivation of the tilt from
the accelerometer readings, the phone’s height is unknown
when the user is walking. BumpAlert utilizes the results of
the acoustic detector to estimate the phone’s height. This design is
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Fig. 6. Height estimation by the acoustic detector. The phone’s height
can be estimated by the sound reflections from the ground.
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Fig. 7. False detection by the visual detector. The visual detector
might over/under-estimate the distance to objects in different scenarios.
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novel since existing image-based detections simply assume
the height of a camera is known. This parameter might
be easy to acquire in certain scenarios, such as installing
the camera at a fixed location inside a car, but not in
our scenario, since the height of a phone vary with users
depending on their height and ways to hold the phone.

The histogram of objects detected by the acoustic detec-
tor with different estimated distances are plotted in Fig. 6.
This data were collected for two participants of different
heights. The maximum peak at distance 0 is the receipt of the
transmitted signal. Detections within [10, 60]cm are reflec-
tions from the human body. There are also relatively fewer
detections in the region [70, 180]cm. The main reason for this
phenomenon is that people need a space in front to move
forward, resulting in a low probability that there is an object
in this range while people are walking. Thus, the highest
peaks within this range are actually the reflections off from
the floor. As shown in the figure, this is approximately 120
to 140cm for participant 1 and ranges from 100 to 120cm for
participant 2. By tracking the distance in this range, we can
estimate the phone’s height with an error of less than 20cm.

Although the visual detector can determine both the
direction and distance of frontal objects, it is undesirable
for constant/frequent use for the following reasons:

e computational cost of image processing is much
higher than acoustic detection, thus consuming more
battery;

o distance measured is less accurate than acoustic de-
tection due to the changing tilt and height estima-
tions;

e back projection may be inaccurate for complex floor
patterns; and

o falsely identifying pattern transitions on the
ground/floor as obstacles.

From our experiments, we found the false positives of
visual detection caused by the following three factors as
shown in Fig. 7. First, shadows cast on the ground will

b

(i

4

Visual
Detection

Fig. 8. Fusion algorithm If necessary, the visual detector can be
enabled to check if the objects found by the acoustic detector actually
exist.

cause the color of the ground/floor to be different from
its surroundings, hence flagging as a different texture area.
Second, overhanging obstacles cause the estimated distance
to be farther away than the actual position because their
bodies are not fully connected to the floor. Third, changing
patterns of the ground/floor also cause false detections
and are mistaken as an obstacle as they are different from
the identified ground/floor texture. A representative error
pattern of visual detection can also be found as the purple
crosses shown in Fig. 3. For example, there is a burst of false
positives between 3 and 5 seconds in Fig. 3(b), even though
there were not any objects ahead. The detection is also less
accurate than the acoustic detector. As shown in Fig. 3(a),
the estimation errors of the visual detectors between 5 and
8 seconds are about 10-100cm while the acoustic detector
has errors less than 15cm. BumpAlert overcame the above
challenges by combining the acoustic and visual detectors as
described in Section 3.4.

3.3 Motion Estimator

As mentioned in the previous section, the tilt of a phone’s
camera is directly related to its accelerometer. Similarly, the
acoustic detector needs feedback from the phones’ sensors
that provide information about the user’s walking speed
to improve the detection accuracy. Using the accelerometer
readings, the steps that a person takes can be detected
as there exist periods of high and low accelerations. Each
peak-to-peak cycle indicates if a step has been taken and
the walking speed can be estimated as the product of step
frequency and average step size. In BumpAlert, the step
size can be either entered by the user or set to the default
average step size. This coarse estimation of walking speed
is adopted in various applications, such as dead-reckoning
systems [27]. The acceleration can also allow the system
to determine if the user is walking or stationary when its
variance exceeds a predefined threshold.

3.4 Fusion Algorithm

A combination of the above algorithms is used to improve
accuracy and lower the false detection rate. We also re-
duce power consumption by deactivating components that
would not improve the detection accuracy. Fig. 8 shows the
logical flow of when to run which component based on out-
puts from other components. First, the detection algorithm
need not be run when the user is stationary. We trigger the
the detection algorithm only when the user is walking, and
switch it off when there is no movement. Second, the low-
cost acoustic detector is triggered before the high-cost visual
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Fig. 9. Objects identified by the clutter filter. The clutter filter is a
special case of the proposed motion filter for finding objects with 0
relative speed to users. It provides a hint for the fusion algorithm to
trigger the visual detector, when necessary.

detector. That is, the visual detector is triggered to double-
check the acoustic detection result only when the latter is not
convincing enough. When the visual detector is enabled, a
warning message is issued only when the both detectors
find the same object within a 2—4m range. The acoustic
detector is good at detecting the objects around the user
within a certain range but is less effective in dealing with
side objects (i.e., in cluttered environments). In contrast, the
visual detector is free from the side object problem since it
focuses on the user’s front view. BumpAlert therefore uses
a combination of acoustic and visual detections, especially
in cluttered environments.

To identify cluttered environments, the motion filter in
Algorithm 2 is also used to estimate the number of station-
ary objects when we set the relative speed to 0. This new
application of the motion filter with 0 relative speed is called
the clutter filter, and its effectiveness is shown in Fig. 9. It
can detect those objects that do not have any relative speed
to the user. The outdoor environment does not leave many
objects after applying the clutter filter, while the aisle envi-
ronment leaves many objects. Thus, the aisle environment
can be identified as cluttered since the number of objects
passing the filter exceeds a predefined threshold. Reuse of
the motion filter for identifying a cluttered environment is
also a novelty of BumpAlert, which provides a hint to the
fusion algorithm for triggering the visual detector. Existing
approaches based on light and geomagnetism changes can
only determine if users are located inside a building or
not [28], which is not sufficient since disabling the visual
detector in a lobby area (indoor) is found to provide better
results, but the visual detector is necessary in a cluttered
(indoor) aisle.

In the fusion algorithm, different detectors complement
each other in different situations. In a cluttered aisle, side
walls will be falsely classified by the acoustic detector as
obstacles, but are filtered out by the visual detector since
such side objects are not captured by the rear camera. On
the other hand, crossing from a cement floor to a grassy area
is falsely classified as obstacles by the visual detector but is
filtered out by the acoustic detector because no reflections
are received from the grassy area. By integrating these detec-

)
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Fig. 10. Test Setting. Ground truth markers are used to collect the real
distances to the test targets. The selected test targets are ordered by
their size, which is related to detection accuracy.

tors, BumpAlert can therefore discover dangerous objects
with high accuracy and a low false positive rate. Note that
our current design aims to prevent users from bumping into
static objects, like walls, signboards, or pillars. See Section 7
for the discussion of detecting moving objects.

4 IMPLEMENTATION

We implemented BumpAlert as an Android app on the
Galaxy S4. As BumpAlert relies only on the phone’s built-
in sensors, it can be easily ported to different platforms,
such as iOS and Windows. For BumpAlert to be compu-
tationally efficient, the signal processing, such as bandpass
and matched filters, are implemented in C and interfaced
through the Java Native Interface (JNI), which yielded
shorter execution times. The control logics shown in Fig. 8
are implemented in Java due to its low computation re-
quirement. As a result, each iteration of the acoustic/visual
detector can be completed within 25/80ms while its period
is set to 100ms.

We choose the rate to trigger acoustic/visual detectors
to be 10Hz and the sensing range to be 2—4m in order to
balance between detection accuracy and processing cost.
According to the results in [29], [30], the average human
walking speed is about 1.5m/s and the reaction time to an
auditory alert is about 150ms. This reaction time is similar
to using a vibration alert. Thus, a sensing period of 100ms
with a distance range of 2—-4m is sufficient to alert the user,
and the choice of these parameters works well as shown in
Section 5.

To run BumpAlert with other apps simultaneously, we
may choose to implement BumpAlert as a system service.
However, in the latest version of the Android API, the
camera is not allowed to be used in a background service
due to privacy issues. Likewise, in BumpAlert, images are
not saved but only processed for object detection. In future,
we will implement BumpAlert as an open-source library
so that app developers may easily include our modules to
enable this functionality to protect their users.

5 EXPERIMENTAL EVALUATION

We have conducted a series of experiments to assess the
performance of BumpAlert in real-world settings. Since the
goal of these experiments is to capture and evaluate the
performance of BumpAlert, we manually selected objects
of different sizes and asked participants to walk toward
those objects multiple times under different representative
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Wall Signboard Bin Box

TP FP Delay | TP  FP Delay | TP FP Delay | TP FP Delay

(o) (%) (ms) (o) (%) (ms) (%) (%) (ms) (o) (%) (ms)
Outdoor-Acoustic | 100 0.6 320 983 5.6 516 9.7 2.8 567 91.7 35 470
Outdoor-Visual 633 9.8 247 85.0 27.6 265 85.0 139 251 75.0 199 485
Outdoor-Fusion 100 05 433 983 22 610 95.0 1.7 572 90.0 1.8 508
Lobby-Acoustic 983 1.3 108 933 12 318 9.7 0.6 278 933 13 321
Lobby-Visual 783 119 297 61.7 45 323 86.7 12.7 496 717 75 711
Lobby-Fusion 983 13 111 933 1.0 367 96.7 0.6 290 933 13 325
Aisle-Acoustic 100 321 105 100 28.2 193 100 29.1 203 98.3 28.0 245
Aisle-Visual 98.3 284 45 100 275 598 100 222 417 100  26.8 465
Aisle-Fusion 91.7 98 330 100 6.0 547 950 6.1 447 917 63 566

TABLE 1

Comparison of performance in different environments

scenarios. The benefit of this setting is to collect ground truth
and quantize the detection of BumpAlert accurately. This
information is important for us to infer the performance
of BumpAlert in the real world but difficult to obtain if
participants are allowed to walk toward random obstacles in
a single long route. Moreover, as shown in our experiments,
the performance of BumpAlert depends on the objects
and scenarios, so the objects seen in a long route create
a significant bias in the final result. For example, a path
consisting of 10 walls and 5 dustbins can get a better result
than the one of 5 walls and 10 dustbins because wall is an
easy target to detect. To avoid this bias, we chose to provide
the accuracy of BumpAlert against each object in different
scenarios rather than the aggregated accuracy in a single
long route. The usability of BumpAlert is evaluated further
in Section 6 via a users study that collects feedbacks from 21
participants who used BumpAlert for 15min. In future, we
plan to evaluate BumpAlert with more participants over a
longer period of time after its deployment.

In each experiment, 7 participants are instructed to walk
towards various objects, such as walls and signboards in
both indoor and outdoor environments. Each of these ex-
periments is repeated 10 times to average the errors due
to the differences in each user’s walking pattern and path.
The participants are instructed to press a specified button
when they walk through a marker placed on the ground
as shown in Fig. 10(a). This serves two purposes. First, it
simulates the users being pre-occupied with a task that they
would have to accomplish by looking at, or typing on their
phones. Second, the ground truth can be collected as the
markers are placed at a Im interval. In this evaluation, we
define a positive detection as the obstacle detected within a
2-4m range. Any alert when the user is 2-4m away from the
target object is classified as a successful alert and the ratio of
these alerts is called the true positive (TP) rate. On the other
hand, any alert occurring when the user is actually 4m or
farther away from the target object is classified as a false
alert, and the corresponding rate is calculated as the false
positive (FP) rate. The average delay is defined as the time
from a participant walking through the 4m marker to the
time an alert is triggered.

5.1

In this experiment, a set of 4 objects shown in Fig. 10(b)
are used as obstacles in 3 different environments. They
are wall, signboard, dustbin and cardboard box, which are
ordered by their relative size. These objects are selected to
represent different types of objects in the real world. The

Accuracy in Different Environments

difficulty of detection is due mainly to the size of objects.
For example, we get similar results for the detection of a
glass door and a wall. Moreover, since these objects can
easily be found/moved in both indoor and outdoor envi-
ronments, the performance degradation caused by different
environments can be accurately measured in this setting.
Other objects, such as pillars and cars, are also tested and
shown to have similar characteristics but those results are
omitted due to space limitation. The three test environments
we used are an open outdoor area, a building lobby, and
a (5m-wide) cluttered aisle. Each participant repeats each
experiment 10 times and the 10Hz raw data of both acoustic
and visual detectors are logged to evaluate the detection
rate of individual experiment offline by the same detection
program. This is to allow for comparison of each individual
component based on the same data set, which consists of
more than 12km walking traces. We conducted experiments
in the presence of environmental noises, such as students’
chatting, but found those noises did not affect BumpAlert’s
performance much since the frequencies of most noises
associated with human activities are below 11kHz [31] and
BumpAlert adjusts its detection based on the noise level.
The only problem we found is participant 7’s outdoor trace
collected on a very windy day (more than 24mph). In this
case, the signal received at the phone’s microphone was sat-
urated by the wind sound alone, and hence, we postponed
the experiment to the next day.

From the results in Table 1, one can see that the acoustic
detector outperforms the visual detector in TP rate because
the sensing range and sensitivity of the former is longer
and better than the latter. The overall TP rate of acoustic
detection is higher than 95% which is sufficient to identify
most dangerous objects. The average delay in all cases is
shorter than 650ms for both visual and acoustic detections.
This low delay of BumpAlert provides the users walking at
1.5m/s with more than 2s to react and avoid the obstacles,
which is much longer than the human's reaction time [29].

The aisle scenario shows a high FP rate for the acoustic
detection due to its cluttered environment. In contrast, the
visual detection is not affected by this scenario due to
the directional nature of image taken by the phone’s rear
camera. Therefore, the average FP rate of visual detection
in this scenario is even lower than the FP rate of acoustic
detection. We exploit this complementary nature of acoustic
and visual detectors by using a fusion algorithm to ensure
a high TP rate in outdoor environments while significantly
reducing the FP rate in indoor environments as shown in
Table 1. The fusion algorithm also lowers the FP rate in
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Fig. 11. Stationary objects passing the clutter filter. Cluttered areas
can be identified by monitoring the number of stationary objects.

outdoor environments which are due mainly to a strong
wind blowing into the phone’s microphones. Actually, many
false detections in the 5m-wide aisle are not incorrect since
there exist objects, e.g., the water fountain on the side and
the emergency sign at the ceiling, which is in front of users
within 2—-4m. If the detection range is shrunk to 1-2m, the
FP rate of acoustic detector is reduced from 28% to 5%
and it is reduced further to 2% when a combination of
acoustic and visual detection is applied. Note that there is a
trade-off between false detection and detection range. One
possible resolution is to alarm users when they are located
in a cluttered environment where the detection range of
BumpAlert is shrunk, and hence they need to pay closer
attention to their walking. This is part of our future work.

As stated in Section 3, the key component of the fusion
algorithm to work properly is its ability to estimate the
number of stationary objects through the clutter filter. In
real-world experiments, we set the threshold of stationary
objects to classify environments as cluttered as 5 (i.e., turn-
ing off the visual detection when there are < 5 stationary
objects). The distribution of stationary objects in different
scenarios is plotted in Fig. 11. Our experimental results also
validate the effectiveness of the clutter filter in enabling the
visual detector under a proper condition.

Of all the objects considered, the wall is found the easiest
to detect due to its large size, and the box is the hardest
in terms of TP ratio and delay. Moreover, the TP rate of
signboard detected by the visual detector is lower than that
of other objects, which is due to the signboard overhanging
above the floor as shown in Fig. 7(b). Although the visual
detection for the signboard is above 80% in outdoor and
aisle environments, their high TP rates are also accompa-
nied by a high FP rate. This implies that the detector was
guessing most of the time, leading to the high TP and FP
rates and not a true representation of accurately detecting
the object.

Many other objects have also been tested but the results
are not reported here due to space limit. One interesting
finding is that acoustic detection of a human is harder than
a box even when the human is much larger than the box.
This is because the human body absorbs most sound signal
instead of reflecting it. We found that the acoustic detector
can only detect humans within a 1-3m range under the
current setting, which is shorter than the other objects we
tested. Nevertheless, BumpAlert can still detect humans
with a TP ratio higher than 82%. Moreover, the chance of
bumping into a person is less likely than other stationary ob-
jects because people usually try to avoid distracted walkers.
An alternative solution to this problem is to continuously
monitor objects with an additional signal of different (low)
frequency which is easy to be reflected by the human body.

9

acoustic | acoustic | visual | visual | h, | ¢,
id | TP(%) FP(%) TP(%) | FP(%) | m) | °)
pl 97.5 5.4 97.5 36.4 1.3 | 52
p2 100.0 1.8 100.0 11.1 11 | 54
p3 95.0 2.5 87.5 21.3 1.3 | 53
p4 100.0 32 90.0 17.6 1.1 | 39
p5 90.0 0.2 12.5 2.7 1.0 | 31
pé 100.0 1.7 100.0 32.2 1.2 | 65
p7 100.0 2.6 100.0 17.6 1.2 | 56

TABLE 2

Individual detection rate of the trace in lobby

Even though the current version of BumpAlert does
not handle moving objects, it is general enough to detect a
variety of objects in real time. The issue of detecting moving
objects like humans or cars will be part of our future work,
and it might be addressable by using other complementary
approaches such as those in [4], [6].

5.2 Accuracy among Different Participants

To study the effects of different participants with different
phone-holding positions and walking patterns, the above
results are separated based on individual participants. The
phone tilts/heights and the corresponding detection results
are summarized in Table 2. According to our experiments,
the tilt of phones, t,,, varies from 31° to 65° among different
participants; so does the phone height h, vary from 1 to
1.3m. These parameters for the same user did not vary much
over time.

An interesting finding is that the acoustic detection
accuracy is slightly different among participants. We have
repeated several tests with different holding positions and
found that the variation is affected by the way the phone is
held and the AGC of the phones’ microphones. For example,
when the speakers are being blocked by fingers, the received
signal strength is low due to the obstruction. On the other
hand, if the phone is held tightly, the magnitude of the
received signal sent directly from the phone is increased.
This signal may be strong enough to saturate the range
of the microphones, and the reflected signals are usually
weaker due to the lower gain adapted by AGC. However,
with the adaptive threshold mechanism as described in
Section 3, BumpAlert can accurately estimate the noise
level and detect reflections effectively.

The extreme low visual detection ratio of participant p5
was caused by his way of holding the phone, 30° with
respect to the horizontal plane. The detection results we col-
lected from participant p5 show that only those images close
to (within 1m of) the obstacles can yield a sufficient area
for detection because of the low tilt of the phone, implying
that our visual detection is not applicable to certain pos-
tures of holding a phone. We also recruited two additional
participants who hold their phones with a posture similar to
participant p5’s to repeat the above experiments. Our results
indicate that the visual detector is unable to function with
tilt lower than 30° for identifying 2m-away objects. How-
ever, the high probability of successful visual detection by
the other users also implies that visual detection works with
a broad range of tilts from 40° to 65°. One potential way to
address this issue is to warn the users, when they enable
BumpAlert but hold their phones with the tilt less than
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40°. According to the users study in Section 6, most users
feel comfortable with this operating range of BumpAlert.

5.3 Processing Cost and Energy Consumption

Our final experiment is to evaluate BumpAlert for its
real-time performance and resource consumption. Under
its four different configurations, we ran BumpAlert for an
extended period of time in typical environments. The CPU
usage of BumpAlert is logged via the top command at an
interval of 10 seconds. A 1-hour trace is averaged to obtain
CPU usage as well as power consumption. Four different
scenarios are tested: idle (with backlight on), acoustic de-
tection only, visual detection only, and trace. The idle case
is used as a baseline which mainly represents the power
consumed by the backlight. In the case of acoustic or visual
detection only, each algorithm is run independently at 10Hz
with backlight on. Since the energy consumption depends
on how often BumpAlert turns on/off the visual detector,
we also include a real-world trace from participant 1 where
the visual detector was enabled only when necessary. This
trace is collected when the participant is walking between
his home and work. We chose to display participant 1’s
result because his on-foot travel time is longer than the other
participants.

The CPU usages when the app is Idle, in Acoustic only,
and Visual only are 3.08%, 8.92% and 17.80%, respectively.
One can see that the CPU usage of Visual detector is
approximately twice the value of Acoustic detector. As
the high CPU usage, the power consumption of the vi-
sual detector is also observed to be much higher than the
acoustic detector’s. For example, the acoustic detector only
consumes one-fourth more energy than the idle baseline
(with backlight on) but the visual detector consumes twice
more energy. In our experiments, most of the energy is
consumed by the microphone/speaker/camera hardware,
not by the computation [32]. Thus, the capability of reducing
the energy consumption in software is limited. Note that the
percentage of additional energy consumed by BumpAlert
will be reduced further when users turn on WiFi/4G or play
mobile games. In the actual usage as the trace of participant
1, the S4 battery only has an additional 8% drop after one
hour usage.

6 USERS STuDY

We randomly selected 21 passers-by (10 females and
11 males) in our campus without prior knowledge of
BumpAlert to evaluate its usefulness and practicality. The
users were asked to try out BumpAlert for 15 minutes
and fill out a survey form. Users tried a demo version of
BumpAlert as shown in Fig. 12(a) at locations shown in
Fig. 12(c). The results are summarized in Table 3.

The first section of our survey attempts to analyze the
prevalence of distracted walking. Our result indicates that
81% of the participants use their phones while walking
and 43% of them had run into obstacles due to distracted
walking. Even though a half of the participants did not
bump into any obstacle before, 76% of them were afraid
of running into obstacles when they use their phones while
walking. The percentage of people colliding with obstacles
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Fig. 12. Survey settings. The demo version of BumpAlert processes
the acoustic/visual detectors in real time. The separate tilt survey app
records phone tilt when participants walk and provide feedback if the
phone tilt is not in the selected range.

Questions Disagree | No option | Agree
I can play my phone around 40° (at 10 0 90
walking for detecting obstacles)

I can play my phone around 50° 10 18 72

I can play my phone around 60° 80 5 15
Detection accuracy is helpful 14 14 72
Detection range is acceptable 28 0 72
False alarm is bothering 39 32 29

TABLE 3
Survey results (%).

increases to 86% if their friends who had bumped into
objects are included.

The second section of the survey attempts to know the
tilt when the users hold their phones and check if people are
willing to hold phones in a specific tilt range for the benefit
of obstacle detection and warning. A separate Android
survey app shown in Fig. 12(b) was used to record and
inform the participants of the tilt in holding their phones.
They were first asked to walk with BumpAlert enabled
to record tilts when they hold their phones in the most
comfortable position. Then, we selected several different
angles that allow the survey app to monitor the tilt of
phones and provide a feedback (via vibration and a red text)
when the user does not hold the phone in the selected angle
within a £10° range.

The phone tilt has been studied extensively in [33]
by continuously recording the tilt via published Android
widgets. However, the users’ state (e.g., walking or sitting)
when the tilt is recorded was not reported there. In our users
study which records the phone tilt when users are walking,
most participants hold their phones at approximately 35°
relative to the ground. This result matches the average
phone tilt when Google Maps is run as reported [33]. This
tilt distribution is not optimal for BumpAlert as shown
in Section 5. However, after having experience in holding
phones with different angles and being told about our pur-
pose, 90% of participants were willing to hold their phones
between 40° and 50°, which is proven good for BumpAlert.
Thus, it is reasonable to provide similar feedback when
BumpAlert is enabled but the tilt of phones is not in the
operation range.

The third section of the survey asks participants to
evaluate the usefulness of BumpAlert after a 15min trial
in three scenarios as shown in Fig. 12(c). The three criteria
we used are the detection accuracy, detection range and
false-alarm rate. About 72% of the participants agree that
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the detection accuracy and range are adequate, allowing
them enough time to react to imminent obstacles. Some
participants have commented that they would be able to
avoid obstacles at even a shorter distance, such as 1.5-3m.
This feedback was useful for BumpAlert to reduce the false
positive ratio. 29% of the participants did not want to have
any false alarm. We found some of participants react even
to the correct detection of a wall 4m away as a false alarm.
Based on the performance of BumpAlert we were able to
satisfy most participants with low false positive rate and
good detection ratio.

The last section of the survey addresses the issue of
power consumption. Only 14% of the participants want
the power consumption to be below 4% per hour. The
power consumption of BumpAlert varies from user to user,
depending on the users’ activities. In our initial experiment,
power consumption is approximately 8% per hour, which
meets the criteria of 86% of people who are willing to use
the application.

Even though the study of 21 users is somewhat limited,
it did help us understand what the users need. For example,
besides the quantitative results mentioned earlier, during
the user study, we also noticed that the users’ satisfaction
with BumpAlert is strongly dependent on the user inter-
face (UI). For example, in a crowded area, users are more
comfortable when the Ul shows a detailed notification like
“Crowded area detected. Don’t use your phone while walking”
rather than a message like “BumpAlert is off’. Many of the
feedbacks we received actually made us adjust our design
as shown in Section 8. Crafting a proper Ul and building a
large-scale user study are parts of our future work.

7 LIMITATIONS AND DISCUSSION

Based on our evaluation and users study, BumpAlert has
been proven able to prevent distracted walkers from collid-
ing with various obstacles, ranging from glass doors to small
dustbins. However, the current version of BumpAlert has
a few limitations. A test deployment via PhoneLab [34] or
Amazon Mechanical Turk [35] might be the next step to eval-
uate how BumpAlert works for different devices, obstacles,
user heights, walking patterns, or phone-holding postures.
Also, discussed below are possible venues to detect moving
objects, minimize the liability of missed detections, and
avoid the audible sound interference.

71

In addition to the various static objects we have already
tested for the evaluation of BumpAlert, its current version
cannot detect moving objects since they have the unmatched
relative speeds and are thus filtered out by the motion
filter. There are several potential solutions to address this
issue. For example, instead of just matching the pedes-
trian’s walking speed with the speeds of objects moving
toward the user, a more sophisticated machine learning
algorithm might be able to distinguish the detections caused
by different objects, and then track their moving trajectories.
However, this type of complex algorithm might consume
more energy/computation resources, and generate addi-
tional false detections. Finding a balance between detection
capability and computation cost is part of our future work.

Detection of Moving Objects

11

@GO e e

é‘;% Coca-cola just .
W At saved you a bump! Bump avoided
==% thanks to Macy's!

macys
OK

Fig. 13. An example user interface for the business of app devel-
opers. BumpAlert executes in the background with no disturbance to
users and the warning with third-party advertisements is shown only
when dangerous obstacles are detected.

Questions Disagree | No option | Agree
I can tolerate 11kHz sound beep (on 42 10 48
the purpose to detect obstacles)

I can tolerate 4kHz sound beep 48 10 42

I can tolerate 441Hz sound beep 42 29 29

I can tolerate 11-22kHz chirp 95 0 5

I can tolerate Music fused beep 39 29 32

TABLE 4
Audible sound survey (%).

7.2 Liability of Missed Detections

As mentioned earlier, BumpAlert is unable to warn users
of “all” dangerous objects, and it is also not the purpose
of BumpAlert. Some objects might be detected by integrat-
ing BumpAlert with other existing systems while others
may not. For example, distracted pedestrians might fall by
stepping through the gap from sidewalks to streets, but
BumpAlert will not be able to detect this gap since there
is nothing in the gap to reflect the audio signals. This situ-
ation can be prevented by incorporating an existing system
designed specifically for recognizing the street gaps [5].
The same principle can also be applied to the detection of
moving vehicles [4]. However, no matter how the system
is integrated and designed, there will always be possible
missed detections. That is, all warning systems including
BumpAlert are to enhance, but not to guarantee, distracted
walkers’ safety.

We argue that even an expensive system relying on many
specialized sensors still experiences miss detections, e.g., the
recent tragic accident of the latest Tesla autopilot driving
model [36]. The main goal of BumpAlert is to provide
distracted pedestrians additional safety protection with only
minimal resources. So, users should not expect to navigate
based solely on BumpAlert but exploit the BumpAlert-
provided warning for their safety. Fig. 13 shows an example
user interface for developing BumpAlert as a freemium
which lowers the users” expectation of 100% detection rate.
App developers still get paid via advertisements in the alert
view when obstacles are detected correctly.

7.3 Annoyance Caused By Audible Sound

As mentioned before, BumpAlert relies on a 11kHz beep to
sense environments. Although only a short (i.e., 40 samples)
sequence of sound is emitted, imperfect speaker design
makes the beginning and end of this sound louder than
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Fig. 14. Acoustic detection in BumpAlert+. Bright areas indicate the
possible existence of detected obstacles.

expected. This audible noise is due mainly to the hardware
limitation of commodity phones.

The authors of [37] have shown that a 22kHz sound can
be used to send data at a low bit-rate with proper signal
processing. However, the purpose of BumpAlert is differ-
ent from theirs in that the emitted sound should be strong
enough to generate reflections from obstacles rather than
sending data in a best-effort manner. Moreover, their results
did not account for the limitation of speaker hardware
either, since a special speaker (unavailable in commodity
phones) was used in their evaluation. In our experiments
with Galaxy S4/5, inaudible sound of 22kHz is unable to
detect objects within 2-4m. This result is also consistent
with their hardware study; the signals captured by certain
commodity phones at 22kHz are 30dB weaker than those
in the audible range. The responses to this audible sound
among 21 participants are summarized in Table 4.

The participants were asked to answer the questions
after trying BumpAlert and based on the assumption
that it can help them avoid collision with obstacles dur-
ing distracted walking. As shown in this table, even with
prior knowledge of BumpAlert’s purpose, only 48% of
them support the sound emitted by the current version of
BumpAlert. Other lower frequency sounds received even
less support. The use of a wide-band chirp, which can
further enhance the accuracy via pulse compression, was
rejected by 95% of the participants. An interesting candi-
date to hide the audible beep is to fuse the signals into a
music. For example, an instrumental music is selected and
the music signal of 10-12kHz is filtered out and replaced
with our sound signals, and the emitted beeps can thus be
played stealthily. However, even fewer users support this
idea since some think playing music while walking actually
gets more attention from other people. But only 10% of
the participants chose not to support any of these sound
candidates. Thus, BumpAlert may provide multiple sound
signals for each user to choose based on his preference.
Utilizing different sound signals can also enable multiple
users to run BumpAlert simultaneously, where the received
signals from different users can be differentiated by the
corresponding filters. BumpAlert can also use inaudible
sounds to detect objects with newer mobile devices that are
equipped with better-fidelity microphones/speakers, thus
causing no disturbance to users. Next, we present this light
modification of BumpAlert based on our evaluation results
and user feedbacks.
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8 BUMPALERT+

From the participants’ feedback after using BumpAlert,
we found most users favoring less user interference, such
as running the detection in background, no audible noise,
and low false detection over high detection accuracy. For
example, they prefer to turn off the object-detection function
in a high false positive (e.g., crowded) area rather than
getting many false and correct detections. Moreover, while
most of the participants in our study liked the benefits of
BumpAlert, only 48% of them were happy with the sound
signal (of 11kHz). BumpAlert relies on 11kHz beeps to
sense environments because it provides the best sensing
capability among the mobile devices we tested. Inaudible
sound of 22kHz with Galaxy S4/5 is unable to detect objects
within a 2-4m range, because the signals captured at 22kHz
are significantly weaker than those in the audible range [37].
To preserve the safety of distracted walkers without an-
noyance, we design and implement an extended system
called BumpAlert+ which provides reasonable detection
accuracy with nearly zero user annoyance. BumpAlert+ is
designed as a background system service which uses only
an inaudible sound to sense environments. In a crowed area,
BumpAlert+ will not check the image taken by rear camera
but pop up a warning message asking users to take care
by themselves, and temporarily turns off the detection. The
detection range is shrunk to 3m since many participants in
our study regarded the detection of objects 3m away as false
detections. Currently, BumpAlert+ can only be executed on
Galaxy Note 4 as it provides the highest sensing capability
of inaudible signals among the devices we tested. We believe
that the design of both BumpAlert and BumpAlert+ can
be improved and generalized for devices that will likely
emerge in the near future.

The main modification employed in BumpAlert+ is to
use 25ms-long 18kHz-24kHz chirps sampled at 48kHz to
sense the environmental reflections. We choose the chirp
signal instead of a pure tone since we need to boost the
SNR of received signals in this inaudible band. To make
this sound inaudible to humans, BumpAlert+ also applies
similar fade-in/out windowing at the beginning and the
end of each chirp as shown in [37]. Our experimental results
show the signal to noise ratio (SNR) of this particular
sound design on Galaxy Note 4 provides sufficient signal
strength to detect nearby objects. Porting BumpAlert+ to
other devices with compatible hardware settings is part
of our future work. In BumpAlert+, each chirp sensing
period is decreased from 100ms to 50ms since the detection
range is set smaller and the audio frequency is higher (so
the reflections from far objects decay more quickly). This
chirp signal setting also provides less estimation errors
and finer granularity due to the property known as pulse
compression [38]. It is worth noting that the matched signal
strength of both the 11kHz tones and inaudible chirps will
degrade when users are moving due to a known effect
called doppler shifts. However, considering the normal case
where users are walking at 1.5m/s (i.e., a doppler factor of
1.009), this degradation is negligible. This degradation can
be mitigated further by adopting the doppler-invariant sens-
ing signals, such as the hyperbolic frequency-modulated
waveforms [39].
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Fig. 15. Performance of BumpAlert+. Various scenarios have been
tested by walking toward the obstacles from a position 10m away.
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Based on this new audio setting, the acoustic detector is
modified as follows. First, instead of estimating distance by
using the highest correlation peak, a one-time calibration is
done by sending 10 repetitions of a wide-band pilot signal
before using BumpAlert+. This calibration process com-
pares the received and the sent pilots, and ends when the
microphone/speaker sample offset is tuned to less than 5.
After getting the matched filter results as shown in Section 3,
a time-varying gain is applied to compensate for the decay
of the signals reflected from far objects. This is accomplished
by multiplying a dynamic gain, i.e., gain(x) = 215 where
x is the audio sample offset. An example of this new
detection when the user is walking toward the corner of
an aisle is plotted in Fig. 14. This figure can be regarded as a
higher-resolution version of Fig. 3(c), where the bright areas
represent the likelihood of an object detection. As shown
in this figure, we reuse the clutter filter to remove objects
with speed 0 relative to the user (such as the ceiling or
side walls) before applying the motion filter. After removing
those objects, we set the threshold to 0.12 in order to alarm
users if the median of motion filtered area exceeds this
threshold.

Our measurements show that BumpAlert+ yields com-
parable results as BumpAlert in identifying objects for
the scenario shown earlier. We also tested many other
objects in both open and crowded areas, and plotted the
results in Fig. 15. Thin objects like flat poles are invisible
to BumpAlert+ and aisles with width less than 3m are just
marked as consistent warning. These results can be further
improved by setting a more aggressive threshold. For ex-
ample, setting the threshold to 0.08 can make the round
pillar and the phone station detectable with 98% accuracy
with only 4% false positive rate. However, as mentioned
earlier, BumpAlert+ is designed to remove/mitigate users’
annoyance, and hence the parameter setting is tuned to
ensure a low false positive rate with high priority. This
result shows that BumpAlert+ serves this design purpose,
providing reasonable detection accuracy with nearly zero
user disturbance. A demo video of BumpAlert+ can be
found from [7].

As mentioned earlier, this inaudible optimization is tuned
mainly based on Note 4, and different devices might have
varying results of using the same setting. Fig. 16 shows the
device capability of using BumpAlert+ to detect a 1.5m-
high parapet wall when it is 2 or 3m away from users. The
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Fig. 16. Device Compatibility. Detect energy ratios are measured as
the peak received acoustic energy when the target is present versus the
peak energy in an open area without obstacles.

peak detect energy ratio is used to characterize its capability
of detecting objects. For example, when the wall is 3m away
from users, we first calculate the peak of the reflected signal
strength between 2.8m and 3.8m and then divide this value
by the peak detection energy in the same range of a reference
data collected without any obstacle. This metric represents
the signal strength of the acoustic reflections to be captured
by the device hardware. As shown in Fig. 16, Note 4 can
receive more than 19dB peak detect energy ratio from the
inaudible reflections when the object is 3m away, while 54
only captures less than 5dB even when the object is 2m
away. Among the devices we tested, Nexus 6P can provide
the best result with BumpAlert+. We also notice that the
detection capability of Samsung Galaxy S-series devices has
improved over time, i.e., S8 > S7 > S5 > S4. Based on our
testing results, the current setting of BumpAlert+ can be
applied to S8 and Nexus 6P easily. Repeating our previous
tests on different devices, like detecting different objects
when users are moving, is part of our future work.

9 CONCLUSION

We have explored how to reduce the accident rate of dis-
tracted walking by using only phone sensors. A prototype
called BumpAlert has been designed, implemented and
evaluated as a mobile app to warn distracted pedestrians
of imminent collision with obstacles. Since BumpAlert
relies only on built-in sensors of commodity phones, it
can be easily deployed on different platforms. BumpAlert
detects obstacles by fusing several sensor inputs with min-
imal computation and energy overheads. In the current
implementation of BumpAlert, the accuracy of detecting
objects in front of the user is higher than 95% in both
outdoor and indoor environments. This high detection rate
of BumpAlert is achievable in a wide spectrum of real-life
environments, ranging from glass doors to small dustbins,
since it does not depend on any a priori knowledge of
detected objects. Our users study has shown BumpAlert
to be acceptable to the general public and a light-weight
version called BumpAlert+ is also proposed based on the
users’ feedback on BumpAlert. We expect BumpAlert and
/or BumpAlert+ will reduce accidents caused by distracted
walking.
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