
Location-Assisted Energy-Efficient Content Search
for Mobile Peer-to-Peer Networks

Yu-Chih Tung
Department of Computer Science and Information Engineering

National Taiwan University, Taiwan

Kate Ching-Ju Lin
Research Center for Information Technology Innovation

Academia Sinica, Taiwan

Abstract—As mobile devices have become more powerful and
ubiquitous in our daily life, sharing content objects among
mobile platforms has become increasingly popular. Without the
help of server infrastructures, clients usually form a mobile
peer-to-peer (P2P) system as an ad-hoc network, and discover
content objects by flooding query to neighboring peers. Such a
flooding-based query method consumes communication energy
of all relay users. Fortunately, we notice that recent emerging
location-based services (LBS) have encouraged part of clients
to provide their location information. Hence, in this paper, we
propose a framework, called LocP2P (Location-assisted P2P),
that better utilizes partial location information to provide peers
a candidate list of content owners and the corresponding potential
routing paths. Our evaluation results demonstrate that LocP2P
can reduce the number of query flooding, and thereby save up
to 50% energy consumption for content search in a mobile peer-
to-peer system.

I. INTRODUCTION

With the growing popularity of Peer-to-Peer (P2P) systems,
clients can share objects, e.g., files or multimedia content,
on the Internet in a distribution manner. On the other hand,
as mobile devices have become more powerful (e.g., higher
network bandwidth, storage and computation capacity) and
ubiquitous in our daily life, caching data on mobile platforms
has become increasingly popular. Therefore, except searching
content on the Internet, clients have an increasing demand for
forming a mobile P2P network and sharing content among
mobile devices over wireless networks [1] [2].

Without the help of server infrastructures, clients usually
form a mobile P2P system as an ad-hoc network. In such
an unstructured network, clients must discover content objects
by flooding query (requests) to neighboring peers until get-
ting the response from any client who holds the requested
objects. Since neighboring users must help forward requests,
such a flooding-based query method consumes communication
energy of all relay users. However, due to a limited battery
lifetime of mobile devices, power consumption is always one
of the most critical design issues of mobile applications.
Hence, the goal of this work is to develop a mobile P2P system
that can improve energy efficiency of object discovery.

One intuitive solution to avoiding flooding is to track
location information of each mobile peer [3]–[5], and build
a network topology in a central server for looking up content
owners and the corresponding routing paths for the requesting
user. Unfortunately, it also costs energy consumption to keep
tracking the ud-to-date location information of mobile peers.

However, we notice that recent emerging location-based ser-
vices (LBS), e.g., Google map, Twitter, and Facebook, have
requested their clients to upload their location information.
If we can better utilize these location information to help
search mobile content, peers in mobile P2P systems can avoid
flooding query to other neighboring users and, in turn, reduce
energy consumption.

Specifically, if clients do not consume extra power to track
position for content search, yet only provide their location
information when they want to access location-based services
of interest spontaneously, could we exploit those informa-
tion to improve energy efficiency of content search? Some
challenges of this concept are that not all the mobile peers
would access those LBS, and could not upload their location
information. In addition, even if part of mobile peers upload
their locations as accessing LBS, the information cached in
the database could be out-of-date. If the server provides an
out-of-date query result to peers, mobile peers might consume
additional power to validate the recommended content owner
and routes, and then use conventional flooding-based query
when the suggested information is incorrect, resulting even
higher energy consumption.

Hence, in this paper, we propose a framework, called
LocP2P (Location-assisted P2P), to manage the location in-
formation and content objects of partial clients. LocP2P is
designed to index location information as well as content
objects in a distributed manner, and recommend mobile clients
a list of potential owners and the corresponding routing paths.
Our evaluation results demonstrate that, by better utilizing
those partial location information, LocP2P can reduce the
number of flooding requests, and save up to 50% energy
consumption for object query in a mobile peer-to-peer system.

The remainder of this paper is organized as follows. Section
II provides a review of related works on mobile peer-to-peer
systems and energy-efficient network protocols. Section III
describes the framework of the proposed LocP2P. In Section
IV, we evaluate the performance of LocP2P. Finally, Section
V concludes this paper.

II. RELATED WORK

There have been many work, DSRP [6], Ekta [7] [8],
on improving the efficiency of content search in a purely
distributed environment. They apply the concept of Distributed
Hash Tables (DHTs) to eliminate the cost of flooding-based

The 7th International Workshop on Mobile Peer-to-Peer Computing

978-1-61284-937-9/11/$26.00 ©2011 IEEE 477

!"#$%&'()#*+,'-+.##
####/0).#',,)112.3#456#

7"#$%*+'&#,+.().(#%8+9*)#

:+;2*)#,+.().(#1)8<)8#

="#>+;2*)#?+.().(#@.&)A2.3#

B"#>+;2*)#?+.().(#6)'8,0#

+/.)8 #%'(0#
C # #DE5EC#
F # #DEGEF#
? # #DE5E?#

C#

?# 5#

G#

H#
D# I"#J)1%+.&#,'.&2&'()#1)'8,0#8)1K*(1#

L"#M'*2&'()#%'(0#

Fig. 1. LocP2P Framework

routing in a mobile network. Our work however targets on
better utilizing the users’ location information that is already
cached in a central server, and reducing the requirement of
querying over an ad-hoc network. Therefore, our work can be
integrated with any other purely distributed methods, which
can further improve the efficiency of content search if the
location information does not help.

On the other hand, several approaches, such as GCLP [3],
Globase.KOM [4] and GeoKad [5], proactively ask users to
report their location, and build an explicit lookup structure
based on the full knowledge of location information to avoid
flooding. By contrast, our work lets users update their location
spontaneously without any extra energy cost, and harnesses
the location of partial users to enhance energy efficiency of
content search as much as possible.

Some other network protocols are proposed to improve
energy efficiency of data transmission for mobile devices.
CoolSpots [9] enables a wireless mobile device to automat-
ically switch between multiple interfaces, such as WiFi and
Bluetooth, to reduce energy consumption based on demanding
bandwidth and transmission range. Cool-Tether [10] harnesses
the cellular radio links of neighboring smartphone, and builds
them as a WiFi hotspot to provide energy-efficient connection
for mobile devices that do not have cellular connection.
Bartendr [11] is an energy-aware scheduling algorithm that
enables each 3G client to receive data only when the signal
strength is good, and thus reduces power consumption per
bit transmission. Orthogonal to the above protocols, LocP2P
targets on reducing energy consumption of mobile content
discovery.

III. LOCP2P FRAMEWORK

In conventional mobile peer-to-peer systems, when a client
attempts to download an object of interest, it could flood the
query to all neighboring users, and wait for the responses
indicating the owners of the request object alone with the
corresponding routing path. However, such a flooding-based
query method consumes all neighbors’ power for each query.
Motivated by energy inefficiency caused by flooding query,
the goal of our design is to harness the location information
of users to reduce power consumption for content search.

Figure 1 illustrates our system framework. Suppose part of

!"#$

!"%$

!"&$

!"'$

!"($
!")$

!"*$

!"+$

,-.$ /0-1$ 234$

!"%$ 5$ %$

6$ &$

7$ +$

8$ %$

!"&$ 6$ &$

,-.$ /0-1$ 234$

!"'$ 9$ %$

:$ &$

;$ %$

(a) hashed by object ID

!"#$%

!"#&%

!"#'%

!"#(%

!"#)%
!"#*%

!"#+%

!"#,%
-./% 01.2% 345.#6%

!"#&% 7% &%

8% (%

9% (%

:% &%

!"#'% ;% &<'%

=% (%

(b) hashed by location

Fig. 2. Distributed hashed table

clients would report their location information to the servers
when they are running other applications, such as Facebook
or Twitter. Since users spontaneously report location infor-
mation when accessing those location-based services (LBS)
even without our mechanism, we assume that the energy
consumption of reporting the location information can be
neglected in our framework. Specifically, our framework does
not force users to report extra location informations, but just
attempts to best utilize those coarse (i.e., might be out-of-date)
location information in order to recommend clients a list of
candidate search results, including the potential owners alone
with the corresponding routing paths.

We consider an environment where each client can access
the server deployed in the Internet by 3G or WiFi connection,
while attempts to search spatial data or collect social-based
content from their neighboring mobile users. Clients can send
the request to the servers, which help look up the database
and compile the candidate search results. Once the client
receives the results from the servers, it can evaluate the
correctness of candidate results by probing the suggested
routes. If all the suggested routes are out-of-date and do
not exist anymore, it can then flood the request as what it
does in conventional mobile P2P systems. Thus, the search
performance of the proposed scheme must not be worse than
flooding-based query. The extra energy consumption generated
by our scheme includes sending query to the server, receiving
the response from the server, and probing the candidate results.
However, if the candidate results contain correct owner/routing
information, users can avoid significant energy consumption
of flooding. In the following sections, we will describe the
components of server and client design in more details, and
demonstrate when and how such a location-assisted content
search scheme improves the battery life of mobile devices.

A. Mobile Content Indexing

Our system relies on the mobile content server that is
formed by one or a cluster of server nodes1, and can manage
two types of information: content profile and location of each
client. We believe that, with the growth of cloud computing,
such functionality can be easily implemented in the current

1We use “server nodes” to indicate any machine of the mobile content
server cluster, and represent mobile users as “clients” or “peers”.

478

public platforms, like [12], with no or neglected costs. When
a client joins the system, it compiles its content profile,
which contains a list of the hashed keys (IDs) of its objects,
and uploads that profile to the server. It then only needs to
notify the server of the updated items if it adds/deletes some
items to/from the content profile. Besides, when clients access
other location-based services, the location information will be
duplicated in our mobile content server.

Considering the scalability, we adopt a well-known indexing
algorithm, distributed hashed table (DHT) [13], which allows
a number of mobile content server nodes to manage the infor-
mation of all mobile peers in a distributed manner. The original
design of DHT hashes data based on a single major key, e.g.,
usually the hashed value of content objects. However, since
our mobile content server must cache two hashed keys, i.e.,
location and content objects, we must select a proper attribute
as our major key. In our design, we choose user location as
the major key, and use the object ID as the secondary key.
Because location coordination is a two-dimension continuous
space, we divide locations into multiple grids. Each grid is
assigned an one-dimension coordination by using dimension
reduction technologies, such as [14] or [15], which guarantees
that neighboring coordinations in a two-dimension space are
also near to each other in the one-dimension space. Thus,
we can use such one-dimension coordination as the hashed
location key, and let clients close to each other be assigned
similar location keys. To balance the number of clients in each
grid (hashed key), we allow each grid to have a different size
proportional to their client density.

The rationale behind this strategy is that the DHT algorithm
would cache data with similar hashed keys in the same (or
nearby) server nodes. In our applications, content objects are
only useful for the client who sends the query if those objects
are held by its k-hop neighboring peers, where k is the hop
limit of flooding. Hence, for the mobile content server, it is
more important to cache data with similar location in a single
server node because the server can compile the candidate
search results by only looking up data in a few server nodes
that maintain the content objects located in the neighboring
area of the request client. Consider the example shown in
Figure 2(a), the information is cached based on the hashed
key of content objects. When client A requests for object 3,
the server can find all owners of object 3 at node id3. However,
those owners might locate far from the client who sends the
request (e.g., user C), and, thereby, cannot forward the object
to that client. Even though the server can find that peer B
locates nearby client A, it is also difficult to find relay nodes
that can help forward data between peers A and B when users
at location 1 are distributed in different server nodes. That is,
unlike DHT-based P2P systems on the Internet, mobile P2P
systems must filter the information that satisfies the location
constraint. If we index data by using location information
as the major key, as shown in Figure 2(b), the server can
look up the client’s neighboring peers at the same server node
(e.g., loc1, client A’s location), and then search whether those
neighbors hold the objects of interest.

B. Location-based Mobile Content Search

When a client requests for an object of interest, it forwards
the query to the server. The server can then find the node that
is in charge of caching data with the corresponding hashed
location key. Consider the same example shown in Figure 2(b),
if client A searches for object 3, the server finds that client
A locates at loc1 and looks up data cached at server node
loc1, which is in charge of the neighboring area of location
loc1, i.e., locations loc1 and loc2. The server can decide the
size of area it wants to search. For example, assume that the
server attempts to search the content objects located within a
500m×500m square field area around the request client A. If
the grid size of location loc1 is a 250m×250m square filed,
the server should also search for data in the surrounding grids,
e.g., loc2, loc3, etc.

In this example, the server will find that peers (owners)
B, D, and E hold the request object 3. We let M denote
the collection of all candidate owners, e.g., M = {B,D,E}.
Next, it forms all peers in the searching area, i.e, locations
loc1, as a graph G = (V, E), where V is the set of peers in
the searching area, and E is the set of edges that connect two
peers if they are within the transmission range of each other.
For simplicity, we assume that each mobile client has the same
transmission range. Based on the graph G, the server can find
the shortest path p(m) between the requesting client and each
owner peer m∈M based the cached location informations.
Let tloc(c) denote the time-stamp of client c’s latest updated
location information. Assume that a path p(m) includes the
relay peers (c1→c2· · ·→cn); we let p(m) = {c1, c2, · · · , ck}.
We then set the time-stamp of path p(m) as minc∈p(m)tloc(c).
That is, the time-stamp of a path is the same with the time-
stamp of the relay node that has the most out-of-date location
information. After lookup, the server responds the candidate
search results, including the owner set M, the corresponding
path to each owner p(m), and the time-stamp of each path,
to the requesting client. Table I shows the example candidate
search results when client A requests for object 3.

TABLE I
CANDIDATE SEARCH RESULTS

owner path time-stamp
B (A → H → D → B) 7
D (A → D) 5
E (A → D → E) 3

C. Route Validation and Direction Suggestion

Recall that the cached location information might be out
of date. Therefore, once the client receives the candidate
search results from the server, it must verify whether the
recommended routing paths are correct or not. Hence, the
client can trace (probe) the route, and check whether the
probing message can reach the candidate owner. If the probing
message fails to reach the candidate owner, we say that the
recommended route is out-of-date. For the example shown in
Table I, the path for owner B might be incorrect if peer H
already left location loc1. Note that the probing message used
to verify the routing paths consumes extra energy. Hence, if

479

!"

#"

Fig. 3. Direction Suggestion

the server suggests multiple candidates, the client can probe
those recommended routes one-by-one until it finds a correct
one.

In order to avoid the energy consumption of probing routes,
we test the following three probing strategies: (1) shortest-
path first, (2) latest-path first, and (3) the hybrid scheme, and
evaluate their performances in Section IV. In the shortest-
path first scheme, the client probes the candidate routes in the
increasing order of path length. In the latest-path first scheme,
the client probes the routes in the decreasing order of the
route’s time-stamp. In the hybrid scheme, the client verifies
the shortest path, the latest path, the next shortest path, the
next latest path, and so on. Finally, if all the routing paths
fail to reach any candidate owner, the client then uses the
conventional flooding scheme to query the object of interest.

Another potential benefit of our LocP2P is that the mobile
content server could find the results that cannot be discovered
by flooding. Consider the example shown in Figure 3. Client
X is interested in object 5, which is held by owner Y . When
the density of peers is too low or there exists a routing “hole”
in the network topology, the query cannot be flooded to owner
Y . However, owner Y indeed locates very close to the request
client X . Hence, our framework can integrate with any online
map database, e.g., Google map, and recommend the direction
between the client and the content owner. If the client cannot
find any routing path to the owner, it can move along the
suggested direction toward the owner until it reaches the one-
hop transmission range of the owner.

IV. PERFORMANCE STUDY AND DISCUSSION

In order to evaluate the performance of LocP2P, we adopt
SLAW [16] as the mobility model that mimics the properties
of human mobility such as realistic waypoint selection and the
proper inter-contact time of visiting the same place. We used
log-based user profiles collected from Last.fm [17], a database
that tracks listening habits of music content. We collected
profiles for 100 users (denoted by N). For each user, the
data set recorded the 100 songs he/she had listened to the
most. For cross validation, we randomly divide each user’s
favorite songs into a training set (50 songs) and a test set
(50 songs). Let the training set of songs be cached in each
users buffer. Each user then requests songs in the test set to
evaluate the performance of the query performance in LocP2P.
In the following simulations, if we do not specify, the default

TABLE II
SIMULATION PARAMETERS

symbol value description
N 100 Number of total users
TR 100 (m) Transmission Range
Ds 500 (min) Simulate duration
Hmax 2 Maximum relay hop count
avg(Tr) 150 (sec) Average request interval
avg(Tu) 30 (sec) Average location update interval
Er 100 Location-enabled ratio
K 3 Number of candidate search results
∆ 50 (min) Threshold of perfiltering time delay

parameter settings are summarized in Table II.
We compare the performance of the above schemes in terms

of the following performance metrics:
• Flooding success ratio: The ratio of the number of suc-

cessful searches to the total number of requests in the
flooding-based scheme.

• LocP2P success ratio: The ratio of the number of success-
ful searches to the total number of requests in LocP2P.
The successful search here is defined as that the subset of
candidate owners suggested by the mobile content server
can be also found by flooding, no matter the suggested
routing paths are useful or not.

• LocP2P reachable success ratio: The ratio of the number
of successful and reachable searches to the total number
of requests in LocP2P. The successful and reachable
search is defined as that the search is successful and, at
the same time, the routing paths provided by the mobile
content server are correct and can help the client connect
to the owner.

• Truth positive ratio: The ratio of LocP2P reachable ratio
to the LocP2P success ratio, which indicates how many
portions of the suggestions from the server are useful.
Because our scheme lets clients consume extra power to
validate the paths, it is a waste if clients still need to
execute flooding-based query when the validation of paths
fails. Thus, we want this ratio as large as possible.

• Energy consumption saving: The ratio of energy con-
sumption of LocP2P to that of pure flooding-based query.
We use the number of message exchange as energy
consumption in our evaluation.

A. Impact of User Location Update Behavior

Since the performance of LocP2P is closely related to user
behaviors of accessing the location-based services, we study
the impact of the user behaviors in two aspects: average
location update interval (avg(Tu)) and location-enabled ratio
(Er). Figures 4(a) and 4(b) show the results of various settings
of avg(Tu) and Er. Figure 4(a) shows that both of the LocP2P
success ratio and the reachable success ratio increase when
the average location update frequency increases because, if
clients update their location information more frequently, the
information cached in the server is more up-to-date. However,
we can still achieve 0.2 reachable success ratio, which is half
of the pure flooding success ratio. That is, if the objects of

480

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

location update interval (avg(Tu)) (min)

su
cc

es
s

ra
tio

flooding
LocP2P
reachable (SPF)
reachable (LPF)
reachable (hybrid)

(a) Location Update Interval

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

location enable ratio (Er) (%)

su
cc

es
s

ra
tio

flooding
LocP2P
reachable (SPF)
reachable (LPF)
reachable (hybrid)

(b) Location-Enabled Ratio

Fig. 4. Impact of Location Update Behavior

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

filter time delay () (min)

su
cc

es
s

ra
tio

flooding
avg(Tu) = 15 min
avg(Tu) = 30 min
avg(Tu) = 45 min

(a) Reachable Success Ratio

0 10 20 30 40 50
0.82

0.84

0.86

0.88

0.9

0.92

0.94

filter time delay () (min)

tru
th

 p
os

iti
ve

 ra
tio

avg(Tu) = 15 min
avg(Tu) = 30 min
avg(Tu) = 45 min

(b) Truth Positive Ratio

Fig. 5. Impact of Time-stamp Pre-filtering

interest indeed locate within the neighboring area, LocP2P can
save nearly 50% of query flooding. Figure 4(b) shows that the
LocP2P success ratio increases as the location-enabled ratio
increases because, when more users update their current loca-
tion, the server can construct a more complete location/content
database, and compile a more accurate candidate search result.
Another interesting observation is that, in these simulations,
all of three routing strategies achieve the similar reachable
success ratio. This is because that the shortest path contains
the fewest relay peers, and, usually, has a lower probability to
include a relay peer with an out-of-date location information.

B. Impact of Time-stamp Pre-filtering

Since our scheme requires each client to validate the sug-
gested routing paths, we define that the query is a truth positive
result if at least one of the suggested routing paths can reach
one of the candidate owners. Specifically, if the query is a false
positive, i.e., cannot reach the owners, the requesting client
not only needs to perform path validation, but also flood the
request. Hence, we are interested in how the time-stamp of a
routing path affects the truth positive ratio. We evaluate the
performance of LocP2P when the mobile content server filters
(discards) the location information that is older than a time-
delay ∆, i.e., tloc < tcurrent−∆, where tcurrent is the current
time.

Figures 5(a) and 5(b) show the LocP2P reachable suc-
cess ratio and the truth positive ratio, respectively, under

various thresholds of filtering time-delay. The figure shows
that LocP2P provides a higher reachable success ratio when
clients update the location information more frequently, i.e.,
smaller location update interval. In addition, we observe that
the reachable success ratio decreases when we reduce the
threshold of filtering time-delay. However, by keeping more
up-to-date location information, we can improve the truth
positive ratio, as shown in Figure 5(b), and avoid consuming
extra energy of mobile devices to validate suggested paths.
The figure also reveals that the suggested routes have a high
probability to be a valid path even if the location update
interval is smaller than the threshold of filtering time-delay,
which means that the server almost does not filter out cached
information. For instance, when the filtering time-delay is set
to 50 minutes, which is higher than the average location update
intervals (Tu = 15, 30, 45), the truth positive ratio can still be
higher than 84%. That is, only 16% of path validations fail to
reach the suggested owners, and require the clients to perform
flooding-based query. Thus, by choosing a proper threshold of
filtering time-delay, LocP2P can provide a higher reachable
success ratio, while also improve the truth positive ratio, i.e.,
avoiding extra energy consumption.

C. Energy Saving
For simplicity, we assume that each query message and con-

trol message have similar packet length, and use the number
of message exchanges to represent energy consumption. In

481

0 10 20 30 40 50
0

500

1000

1500

2000

location update interval (avg(Tu)) (min)

in
cr

ea
se

d
en

er
gy

 c
ou

nt

LocP2P (SPF)
LocP2P (LPF)
LocP2P (hybrid)

(a) Increased Energy Cost

0 10 20 30 40 50
0

2

4

6

8 x 104

location update interval (avg(Tu)) (min)

en
er

gy
 c

os
t o

f f
lo

od
in

g

flooding
LocP2P (SPF)
LocP2P (LPF)
LocP2P (hybrid)

(b) Energy Cost of Flooding

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

location update interval (avg(Tu)) (min)

en
er

gy
 s

av
in

g
ra

tio

LocP2P (SPF)

(c) Energy Consumption Saving

Fig. 6. Energy Consumption

flooding-based scheme, each query forwarding is counted as
a message exchange. Figure 6(a) shows that extra energy con-
sumption used to forward/receive the query/response to/from
the server and used to probe the suggested routing paths. On
the other hand, Figure 6(b) shows the energy cost of flooding
in all comparison schemes. The figures demonstrate that the
energy cost that LocP2P must pay for communicating with
the server and validating paths is relatively small as compared
to the reduced energy consumption of flooding due to the
reachable suggested routes. On the other hand, Figure 6(c)
computes the ratio of the total energy saving in LocP2P and
that in the pure flooding scheme. The figure indicates that
LocP2P can save up to 50% of the total energy consumption
on content discovery as compared to the pure flooding-based
query scheme. This is because the flooding-based scheme
forwards query to all neighboring users, consuming power of
each relay peer. Hence, by utilizing the location information,
LocP2P can avoid the number of flooding requests, and
thereby reduce energy consumption significantly.

V. CONCLUSION

In this paper, we proposed LocP2P, a reasonable scheme
that reduces the energy cost caused by flooding content
query in mobile peer-to-peer systems. Such a server-assisted
scheme harnesses location information of peers to suggest
user candidate search results, and allow peers to validate
the recommended content owner in order to avoid flooding
process. We conduct performance study via simulations to
evaluate how user behaviors and parameter settings affect the
efficiency of LocP2P. The simulation results also show that
our scheme can save up to 50% energy consumption even
when clients do no update their location aggressively. In the
other aspect, by examining the human mobility model, we
notice that users usually cluster together as several independent
sets, where clients cannot discover each other by flooding.
LocP2P provides another potential advantage that assists users
in moving toward the candidate content owner by suggesting
map directions. In this situation, LocP2P not only saves energy
consumption, but also help discover content objects that cannot
be found by flooding in mobile peer-to-peer systems.

REFERENCES

[1] W. He, Y. Huang, K. Nahrstedt, and B. Wu, “Message propagation in ad-
hoc-based proximity mobile social networks,” in 8th IEEE International
Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010.

[2] F. S. Tsai, W. Han, J. Xu, and H. C. Chua, “Design and development of
a mobile peer-to-peer social networking application,” Expert Syst. Appl.,
vol. 36, pp. 11 077–11 087, October 2009.

[3] J. Tchakarov and N. Vaidya, “Efficient Content Location in Wireless
Ad Hoc Networks,” in IEEE Internation Conference on Mobile Data
Management, 2004.

[4] A. Kovacevic, N. Liebau, and R. Steinmetz, “Globase.kom - a p2p over-
lay for fully retrievable location-based search,” in IEEE International
Conference on Peer-to-Peer Computing, 2007.

[5] M. Picone, M. Amoretti, and F. Zanichelli, “Geokad: A p2p distributed
localization protocol,” in IEEE Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), 29 2010.

[6] Y. C. Hu, S. M. Das, and H. Pucha, “Exploiting the synergy between
peer-to-peer and mobile ad hoc networks,” in USENIX HotOS, 2003.

[7] H. Pucha, S. Das, and Y. Hu, “Ekta: an efficient dht substrate for
distributed applications in mobile ad hoc networks,” in IEEE Workshop
on Mobile Computing Systems and Applications, 2004.

[8] N. Dutta, “A Peer to Peer Based Information Sharing Scheme in
Vehicular Ad Hoc Networks,” in International Conference on Mobile
Data Management (MDM), 2010.

[9] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots: Reducing the
Power Consumption of Wireless Mobile Devices with Multiple Radio
Interfaces,” in ACM MobiSys, 2006.

[10] A. Sharma, V. Navda, R. Ramjee, V. N. Padmanabhan, and E. M.
Belding, “Cool-Tether: Energy Efficient On-the-Fly WiFi Hot-Spots
Using Mobile Phones,” in ACM CoNEXT, 2009.

[11] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: a Practical
Approach to Energy-Aware Cellular Data Scheduling,” in ACM Mobi-
Com, 2010.

[12] “Google App Engine,” http://code.google.com/appengine/.
[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in ACM SIGCOMM, 2001.

[14] Y. Fu and T. S. Huang, “Locally Linear Embedded Eigenspace Analy-
sis,” IFP-TR, UIUC, vol. 2005, pp. 2–05, 2005.

[15] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[16] K. Lee, S. Hong, S. Kim, I. Rhee, and S. Chong, “Slaw: A New Mobility
Model for Human Walks,” in IEEE INFOCOM, 2009.

[17] “Last.fm,” http://www.last.fm.

482

