
Expansion of Human–Phone Interface By Sensing
Structure-Borne Sound Propagation

Yu-Chih Tung and Kang G. Shin

The University of Michigan

Email: {yctung,kgshin}@umich.edu

ABSTRACT
ForcePhone is a novel system that enables commodity phones

to recognize the force applied to their touch screen and body. Re-
searchers have shown the usefulness and importance of this expres-
sive input interface (especially for the one-hand operation), but this
advanced function has not yet been realized and deployed in most
state-of-the-art smartphones. Instead of employing or augment-
ing specialized/proprietary sensors, ForcePhone uses only the
phone’s built-in sensors to measure the applied force via a physical
property called structure-borne sound propagation. ForcePhone
has been implemented and evaluated on both iOS and Android
phones. Multiple demo applications, such as getting the option
menu by hard-pressing a button or surfing the previous webpage by
squeezing the phone, have been implemented and tested success-
fully. The estimated force is shown highly correlated to the real ap-
plied force and the estimation error is less than 54g when the phone
is stationary. Users can easily control the applied force at two dif-
ferent levels with a 97% accuracy. Moreover, ForcePhone can
detect the squeeze of the phone body with a higher than 90% accu-
racy. Most participants in our usability study were able to master
the ForcePhone-based apps and find them very useful.

General Terms
Design, Measurement, Performance, Algorithms

Keywords
Force sensing, Sound, Structure-borne sound, Mobile Phones

1. INTRODUCTION
As smartphones become an essential part of our daily activities,

human–phone interactions have become a norm. To enhance the
input capability on the severely limited space of a phone’s touch
screen, researchers and practitioners have been seeking various
ways to expand the input dimensions. For example, augmenting a
force-sensitive, deformable, or squeezable input is shown to enrich
the input vocabulary significantly, especially for the one-hand op-
erations [13, 29, 36]. However, most of those extended input inter-
faces have not yet been fully developed nor deployed in commodity
phones for two reasons. First, they usually require additional hard-
ware, such as capacitive or contact piezoelectric sensors [14, 32,
34], which are usually unavailable in commodity phones, and the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys’16, June 25-30, 2016, Singapore, Singapore
c� 2016 ACM. ISBN 978-1-4503-4269-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2906388.2906394

Play inaudible sound

Apply force

Structure-borne
 propagation

Less
structure-borne

propagation

Receive the played sound

(a) No force

Play inaudible sound

Apply force

Structure-borne
 propagation

Less
structure-borne

propagation

Receive the played sound

(b) Force applied

Figure 1—Structure-borne propagation and the applied force.
When no force is applied to the phone, the frame and internal com-
ponents of the phone can vibrate freely, and hence the played in-
audible sound can easily propagate through the phone’s body.

requirement of additional cost and space make them less attrac-
tive to phone users and manufacturers [9]. Second, systems based
only on built-in sensors usually impose unnatural/inconvenient us-
age restrictions because it is challenging to recognize those interac-
tions without additional sensors. For example, users are required to
touch the microphone reception hole or block the camera flash light
source for sensing a touch interaction [22, 27], both of which limit
the usability of this additional sensing. Other systems require con-
tinuous vibration of the phone with a vibration motor, causing sig-
nificant annoyance to users [21]. To the best of our knowledge, the
only commodity phone supporting a force-sensitive touch screen is
the latest iPhone 6s, enabled by their proprietary sensors [3]. Un-
like these systems, we propose a new, inexpensive solution, called
ForcePhone, which provides a force-sensitive input interface to
commodity phones without any addition/modification of hardware.
Moreover, ForcePhone provides this force-sensing capability to
the touch screen as well as the phone’s body, called a squeezable
interface.
ForcePhone estimates the user-applied force by utilizing the

structure-borne sound propagation, i.e., the sound transmitted
through subtle vibrations of the device body. In most designs, such
as headphones or pipe-work, this type of propagation is usually
considered as a mechanical noise, but ForcePhone uses it in a
novel way to estimate the force applied to commodity phones. As
shown in Fig. 1, when the phone is left free to vibrate (e.g., the
user is not touching/squeezing the phone), the sound sent from the
phone’s speakers can easily travel through its body to its micro-
phone. However, when force is applied to the phone, it restricts the
phone body’s vibration with the sound, thus degrading the sound
traveling through this structure-borne pathway. ForcePhone es-
timates the amount of force applied to the phone by monitoring the
degree of this degradation.

As mentioned earlier, it is challenging to provide extended input
interfaces with only limited built-in phone sensors. For example,
in ForcePhone, the recorded audio includes not only the sound

Force Force

(a) Hard-pressed option
Force Force

(b) Squeezable back button

Figure 2—Demo apps of ForcePhone. Users can reach an op-
tion page when a button is pressed hard and can also surf the previ-
ous webpage by squeezing the phone.

signal transmitted through the phone’s body but also that through
air, and other reflections. To achieve reliable force estimation,
ForcePhone exploits the feature of active acoustic sensing to get
a proper reference point for fetching the signal traveling through
the phone’s body. ForcePhone also utilizes the information of
other sensing materials to enhance sensing accuracy and reduce the
false detection rate. For example, the location and the start time of
a touch are inferred from the touch screen, and the phone’s move-
ment is inferred from accelerometer readings, which are then used
to filter out unexpected audio signal changes caused by environ-
ment and human noises. By integrating readings of these sensors,
ForcePhone can achieve high force-sensing accuracy while lim-
iting the false positive rate.

To date, ForcePhone has been implemented on Android and
iOS phones to provide a force-sensitive and squeezable interface.
We have realized several apps based on ForcePhone. Fig. 2
presents two examples of those apps which have been shown use-
ful: (1) the hard-pressed option, which is similar to the 3D Touch
on iPhone 6s where varying options are given to users when apply-
ing different amounts of force to buttons, and (2) the squeezable
back of a phone, which allows users to surf the previous webpage
by just squeezing the phone. Note ForcePhone is not limited
to these two use-cases, and can extend human–mobile interactions
in many ways. For example, it has been shown useful to zoom
in/out maps by squeezing phones or type upper-case letters by ap-
plying force to keyboards [13, 29, 36]. Other potential apps of
ForcePhone are discussed in Section 7.

In our experiments, the estimated force is shown greater than 0.9
correlation to the real applied force with 54g errors in stationary
environments. The participants in our controlled experiments were
able to use ForcePhone for applying force at 2 different levels
with a higher than 97% accuracy and squeezing the phone body
correctly with a greater than 90% accuracy. After trying our demo
apps of ForcePhone most participants think our current design
comparable to state-of-the-art proprietary sensors in accomplishing
simple tasks, such as hard-pressing of a button. A demo video of
ForcePhone can be found from [4].

This paper makes the following four main contributions:
• Design of force-sensitive and squeezable interfaces via structure-

borne sound propagation;
• Implementation of ForcePhone on both iOS and Android

phones;
• Demonstration and evaluation of two popular apps; and
• Achieving a higher than 90% accuracy of using the demo apps

in most scenarios.
The rest of this paper is organized as follows. Section 2 dis-

cusses the related work on expressive input interfaces. Section 3

describes the principle of structure-borne propagation, and Section
4 details the design of ForcePhone based on this principle. The
implementation and evaluation of ForcePhone are presented in
Sections 5 and 6, respectively. Limitations and potential use-cases
are discussed in Section 7, and the paper concludes with Section 8.

2. RELATED WORK

Expanding the dimension of touch inputs has been a major re-
search topic for many years owing to the limited-size touch screens
of mobile phones. Users are shown to be able to easily and ef-
fectively control force-sensitive, deformable, or squeezable input
interfaces as they are akin to many natural interfaces, such as ap-
plying force to a water knob [13, 29, 36]. A force-sensitive inter-
face can be implemented by adding capacity sensors [36], adding
contact piezoelectric sensors [32], checking the flash light source
blocked by a human hand [27], monitoring the reduction of sound
volume by covering the microphone reception hole [22], and es-
timating the damped motor vibration with accelerometers [21].
These systems either require additional sensors or impose stringent
usage restrictions, such as blocking the flash light source by hand
or continuously vibrating the phone.

There have also been systems that extend the user’s input by
recognizing the materials of tapping or the instantaneous tapping
force. For example, TapSense [17] classifies the touch sound to
recognize if the user touches the screen by a finger tip or a fist.
ForceTap [19] utilizes the accelerometer to learn how hard the user
taps or shakes the device. It is also possible to extend the touch sur-
face by other accessible objects. SurfaceLink [14] allows users to
perform gestures on a table where the phone is placed, while Skin-
Input [18] uses the human body as an extension of input interface.
Here we focus on how to provide a force-sensitive and squeezable
input interface by utilizing the structure-borne sound propagation.
Table 1 shows a comparative summary of ForcePhone and other
related work. Note that instantaneous tapping force is different
from the force sensing introduced in this paper; the former only
represents the instantaneous force sensed at the time of the user
contacting the touch screen, while the latter continuously monitors
the force applied to the phone after the user touches the phone. Our
system is parallel to these instantaneous-tapping-force systems and
can be integrated with others to enrich the user experience further.

Sound has been a widely-used sensing method as it only requires
microphones and speakers on commodity phones. For example,
knowing the surrounding sounds and reflections can provide accu-
rate indoor localization [28, 38] or tracking human living/sleeping
behaviors [30, 31]. ForcePhone is also sound-based but de-
signed for providing force-sensitive and squeezable interactions.
The closest to ForcePhone are Touch & Active [33] and Pseu-
doButton [22]. Touch & Active attaches external contact piezo-
electric microphones and speakers to objects to learn how the user
is touching the object, which is achieved by fingerprinting the ob-
ject’s resonants. A follow-on study [32] showed that the same fin-
gerprinting technique can also be used to infer the force applied to
objects, which aimed mainly to ease product prototyping. Using
the built-in speakers and microphones on commodity phones was
mentioned as a potential interface for Touch & Active, but no fur-
ther details were provided. Moreover, ForcePhone directly mod-
els and interprets the signal changes caused by the applied force,
rather than classifying the resonants by using machine learning.
The latter usually requires a significantly more effort for periodic
training and retraining. On the other hand, PseudoButton utilizes
similar sound degradation to estimate the applied force. However,

System Interaction Sensing Methods Additional Sensors Working Areas

Apple 3D Touch [3] Force Proprietary sensors Additional Touch screen
Camera and Flash[27] Force Camera+Flash light Existing Camera lens

Touch & Active [33, 32] Force Sound Additional Any object (w/ sensors attached)
PseudoButton [22] Force Sound Existing Microphone reception hole

Expressive Touch [34] Tapping material Sound Existing Touch screen
ForceTap [19] Instantaneous tapping force Accelerometer Existing Touch screen+Phone body
VibPress [21] Force+Squeeze Actuator+Accelerometer Existing Vibrated phone body

Acoustruments [24] Force+Squeeze Sound Additional External connected objects
ForcePhone Force+Squeeze Structure-Borne sound Existing Touch screen+Phone body

Table 1—Existing touch interfaces to enrich input dimensions.

it focuses on the sound degradation of airborne propagation, so it
can only estimate the force changes at the microphone reception
hole, e.g., the recorded volume decreases when the user completely
blocks the microphone reception hole. In contrast, ForcePhone
utilizes the structure-borne sound propagation, which can provide
this force-sensitive touch around the entire body of each phone.

3. STRUCTURE-BORNE PROPAGATION
Sound is a mechanical wave broadcasted by compressions and

rarefactions. The most common material for sound to propagate
is the air, which is known as airborne propagation. Besides the
air path, as shown in Fig. 3, when the sound is generated and re-
ceived by the same device, its body becomes another pathway for
the sound to travel, which is called structure-borne propagation.
Since the structure-borne propagation is usually unrelated to the
intended application, it is generally considered as a noise [12, 26,
39]. However, ForcePhone utilizes it in a novel way to estimate
the force applied to the phone by monitoring the degradation of
structure-borne propagated sound.

As shown in Fig. 4, we model a vibrating phone as a forced,
damped mass–spring system, where the phone vibrates up and
down with the force Fv, which is caused by the sound played at
the phone speaker. When there is no external force applied, the
phone can vibrate freely with amplitude A0, which is captured by
the system’s effective spring constant, K0, and also the damping co-
efficient. Moreover, since the phone is considered as a rigid body,
the equilibrium is located at A0 above the table. Based on Hooke’s
law [20], when an external force Fh is applied to the screen, the
system equilibrium moves downward by Fh/K0. However, since
the phone (a rigid body) is impossible to move downward “into”
the table, the applied force also makes the system spring constant
increase to K so as to meet this equilibrium change and rigid body
constraint. In such a case, if the vibration energy is constant, the
potential energy for both systems will be identical, thus leading to:

1
2

K0A2
0 =

1
2

KA2 =
Fh

A0 � A
A2 (1)

which defines the relation between the applied force and the re-
duced vibration amplitude. Note that this basic model is designed
only for an illustrative purpose as it doesn’t consider the horizon-
tal vibration and the increased friction caused by the applied force.
Moreover, since the hand and the table also slightly vibrate with
the phone, the system’s damping coefficient and effective mass will
change accordingly, which are not accounted for, either. However,
according to our vibration measurements, this simplified model
suffices to describe the principle of ForcePhone’s operation.

We used the Polytec OFV-303 laser vibrometer [7] to mea-
sure the nm-level vibration of a phone, capturing the change of

Structure-borne propagation

Airborne propagation

Enviroment reflections

(a) Sent Sound Propagation (b) Received Sround Response

Time (ms)

S
ou

nd
 C

or
re

la
tio

n

Structure/air-borne propagation
Airborne propagation

Enviroment reflections

0 15 5 10

12

0

2

4

6

8

10

x104

Figure 3—Structure-borne propagation in a phone. The sound
received at a phone is a combination of structure- and air-borne
propagations as well as the environments’ reflections (echo).
ForcePhone uses 20 samples before the strongest correlation
peak as an indicator for a structure-borne propagation.

Figure 4—Phone vibration model. Phone vibration is modeled as
a forced and damped mass–spring system where the phone vibrates
with amplitude A0 due to the force Fv from the phone speaker.
The vibration amplitude is decreased to A and the effective system
spring coefficient is increased to K due to the applied force Fh.

structure-borne propagation caused by touching the phone with
hand. Compared to capturing the structure-borne propagation via
microphones (which ForcePhone is using as described in the
next section), this vibration measurement helps neglect the noises
caused by the air-propagated sound and the imperfect microphone
hardware. Fig. 5 shows our experimental setting where the phone
is placed on a metal surface under the laser vibrometer. The laser’s
focus has been calibrated before the test to ensure that the laser
beam will be reflected properly by the phone surface. The latest
Apple iPhone 6s is used for these measurements owing to its capa-
bility of estimating the applied force. Thumb is used to apply force
at the middle of the phone and the iPhone 3D Touch reading (rang-
ing from 0 to 1) is used as a reference of the applied force. From
our preliminary test, we found that the Apple 3D Touch sensors
can only read the applied force up to about 380g. Hence, we also
repeat the same measurements with the Interlink force sensor [5]
which can measure force up to 10kg. Its current change caused by
the applied force is recorded by the Monsoon power monitor [6].

Figure 5—Vibration measurement setting. Vibration is mea-
sured by Polytec OFV-303 laser vibrometer when force is applied.

0 0.2 0.4 0.6 0.8 1.0 >1
Force (Apple force unit)

4

5

6

7

8

Vi
br

at
io

n
am

pl
itu

de
 (n

m
)

(a) By Apple Sensors

0 1 2 3 4
Force (kg)

75

80

85

90

95

100

Vi
br

at
io

n
am

pl
itu

de
 (%

)

iPhone
Model
iPhone (bottom pressed)

(b) By External Sensors

Figure 6—Phone vibration damped by force. The correla-
tion between the damped vibration and the applied force enables
ForcePhone’s force-sensitive and squeezable interfaces.

Fig. 6 shows the results of phone vibration while applying dif-
ferent amounts of force. As shown in Fig. 6(a), when the Apple
3D Touch reaches its maximum sensitivity, the amplitude of phone
vibration decreases about 5%. If more force is applied further
(marked as > 1), near 50% of the vibration amplitude is damped
by hand. Fig. 6(b) shows the results of measuring the force with ex-
ternal force sensors. The vibration amplitude also decreases about
5% when a 380g force is applied to the phone. Our system model
is shown to be able to capture the main trend of vibration ampli-
tude when the initial system spring constant K0 = 2.7(kg/nm) is
assumed. The most important property observed in this experiment
is the high correlation between the applied force and the decreased
vibration amplitude. Based on this property, ForcePhone can
provide useful force-sensitive applications as introduced in the fol-
lowing sections.

As mentioned earlier, our model is not perfect. For example, as
shown in Fig. 6(b), when the force is applied to the bottom of the
phone, it incurs less vibration change since the measured location
(i.e., the top of the phone) has less restriction when the phone’s
bottom is pressed. A similar phenomenon also occurs when dif-
ferent speakers are used to play sound. Thus, it is necessary for
ForcePhone to make one-time calibration for unifying differ-
ent estimations when force is applied at different locations on the
screen. The calibration needs to be tuned to the phone models as
they have varying vibration patterns depending on the phone ma-
terial. For example, the vibration of Galaxy Note 4 is found to be
50% larger than the vibration of iPhone 6s, and more sensitive to
the applied force since its plastic body is easier to compress. We

18k~22kHz Sound Expressive Touch

Audio Signal

Touch Screen & Accelrometer data

Action Feedback

Action
Detector

Force
Estimator

Action
Analyzer

Figure 7—System overview. Force applied to the phone damps
the inaudible sound sent from the phone’s speaker to its micro-
phone. Accelerometer and gyroscope readings are used to avoid
other audio signal noises caused by movements.

x104

1

0 400 100 200 300 500

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t

2

3

4

5

U
se

d
S

ou
nd

S

in
gl

e
C

hi
rp

Samples
0 600 1200

Pilots Repeated Chirps

-1

1

-1

1 18kHz 24kHz

Figure 8—Example of transmitted inaudible sound. The pilots
are used to synchronize the phone’s microphone and speaker. The
subsequent chirps stop for 25ms before playing the next chirp to
avoid unexpected noises from environmental reflections. (This fig-
ure is rescaled for easy visualization)

also found, for some phone models, such as iPhone 6s, this vibra-
tion decays too fast when sound is played by the bottom speaker
and received by the top microphone, making the force estimation
less accurate. In such a case, we used the top speaker to get an ad-
equate signal to noise ratio (SNR) of collected sound even though
the collected sound will include a part of airborne propagation com-
ponents.

4. SYSTEM DESIGN
As shown in Fig. 7, ForcePhone actively plays an inaudible

sound with the phone speaker, and then picks up this sound with
the phone microphone. The touch screen input (such as the loca-
tion or the start time of a touch) and the data from the other mo-
tion sensors are also recorded. These sensor data are then used to
improve the force estimation and reduce the number of false detec-
tions. When force is applied to the touch screen or the other parts of
the phone body, the action analyzer triggers the pre-designed feed-
back/behavior based on the monitored (inaudible) sounds and user
motions.

4.1 Sound Selection
The design of sound is critical to the system performance.

While there are many other possible options, the current design
of ForcePhone uses a 1200-sample linear chirp from 18kHz to
24kHz. A hamming window is multiplied to the first and last of
300 samples to eliminate the audible noise caused by spectral leak-
age [16]. The main frequency range of sound signals used to sense

is about 20kHz–22kHz while the remaining signals close to 18kHz
and 24kHz are played with minimal volume which are “stuffed”
only to avoid signal loss due to the windowing. ForcePhone

samples this chirp at 48kHz and replays it every 50ms. This sound
is designed to achieve (i) minimal user annoyance, (ii) high SNR,
and (iii) adequate force sensing delay.

According to the field study in [35], humans are shown to have
a limited ability to hear sound above 20kHz. Since most modern
smartphones only support the sampling rate up to 48kHz, the high-
est sound frequency to use is 24kHz. This setting is likely to be ex-
panded in the near future; for example, Android 6.0 has announced
a plan to support a higher sample rate. Our experiments have shown
that playing a high frequency chirp directly is still audible to hu-
mans because an abrupt increase/decrease of energy in time domain
incurs frequency leakages. To avoid this problem, ForcePhone
uses a similar windowing process as in [25] to reduce the noise
burst at the beginning and end of signals. This windowing process
adds an envelope to the sent signal that controls the signal ampli-
tude to 0 in the beginning and then gradually restores the signal am-
plitude to the normal range (the same principle is also applied to the
end of the signal). This design choice will cause SNR degradation
when we estimate the audio correlation of received/sent signals, but
it is practically important to avoid any audible sound. Note that the
chirp starts at 18kHz but is still inaudible because the beginning of
the chirp is played only at the minimal volume (windowing). None
of the participants in our user study noticed/heard the sound used
in ForcePhone.

Ideally, less stop time between chirps will provide a smaller
sensing delay, but the chirps in ForcePhone are designed to be
played every 50ms. This parameter setting is chosen to prevent
the inclusion of audio signals reflected by environments as an un-
expected/unwanted noise. For example, as shown in Fig. 3(b), af-
ter the sound transmitted via airborne propagation (i.e., the high-
est correlation peak) is received, there are multiple following lo-
cal peaks which indicate the reception of sound reflected by the
environment. From our experiments, the received reflections are
found to degrade 20dB after 25ms, which is small enough to let
ForcePhone play and receive the next round of chirp correctly
with only minimal noise due to environmental reflections. Thus, it
is necessary for ForcePhone to have a 25ms (i.e., 1200-sample)
stop time after playing each chirp.
ForcePhone uses the signal correlation (also known as the

matched filter) to estimate the reception of the played sound. The
SNR of this correlation in the chirp is proportional to the signal
length and sweeping frequency [37]. We selected the sweeping
frequency as above in order to not annoy users and cope with the
hardware limitation while setting the signal length to 25ms. Even
though a longer chirp can achieve a higher SNR, it also increases
the sensing delay because ForcePhone needs to wait for the
completion of the sound being played. To strike a balance between
SNR and the sensing delay, ForcePhone sets the chirp length to
25ms, which makes the total delay in sensing each chirp equal to
50ms (i.e., 20 force estimations can be made every second). This
setting is found to provide enough SNR for estimation of the ap-
plied force and an adequate sensing delay which meets most users’
needs.

Besides the design of sound signal, there is another parameter
that affects the received SNR: the phone’s speaker volume. In the
current setting, the audio volume is set to 50% of the maximum
to avoid some audible noise due to the imperfect speaker hard-
ware and deal with the coexistence of multiple phones that run

x104

1

0 400 100 200 300 500

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t

2

3

4

5

3D
 T

ou
ch

M

ot
io

n

0

1

0

0.5

Light touch Hard touch Gradually applying force

s(
t)

Time (sec)
0 5 10

0

2

0

2

x105

Accelerometer
Gyroscope

r(
t)

+8
r(

t) Estimated force
3D Touch maximum

Figure 9—Responses of different amounts of applied force. Mo-
tion sensors only capture the initial response of a touch, but the
sound response can monitor the subsequent applied force.

ForcePhone. An example of the sent sound is shown in Fig. 8.
One thing to note is that there are 10 additional chirps sweeping
from 24kHz to 10kHz played before the above-mentioned chirps,
which are used as the pilot signal for synchronizing the timing of
the phone’s microphones and speakers. If the synchronization fails,
ForcePhone will stop the sensing process and replay the pilot to
achieve correct time synchronization. Detailed performance mea-
surements are presented and discussed in Section 6.

4.2 Estimation of Applied Force
ForcePhone utilizes the structure-borne sound propagation to

estimate the applied force. As mentioned in Section 3, when force
is applied to the phone body, the hand in contact with the phone
body damps/degrades the structure-borne sound propagation. Be-
sides the structure-borne propagation, there are other factors that
affect the received sound strength. For example, the airborne prop-
agation might be blocked by hand, and the overall sound signal
strength may be enhanced by reflections from the environment or
the internal resonant. In ForcePhone, these noises are identified
and removed by timestamping the received audio signal. For ex-
ample, the reflection from an object 10cm away will be received 28
samples later than the airborne propagation since it travels a 10cm
longer distance. Moreover, sound usually travels 100x faster in a
solid phone [23]. Thus, the structure-borne propagation will be
received 21 samples ahead of the airborne propagation when the
microphone and the speaker are 15cm apart. Based on these obser-
vations, ForcePhone uses the signal which is 20 samples ahead
of the airborne propagation as the indicator of the structure-borne
propagation, thus removing the most undesirable noise.

Note that the reference of airborne propagation is assumed to
be the strongest audio correlation because the sound energy decays
faster through the solid phone body and absorbed more on the re-
flection objects than air. Ideally, the temporal -3dB width of audio
correlation are 7 samples for our chirp selection, so it would be
possible to find a clear peak ahead of the airborne propagation, in-
dicating the reception of structure-borne propagation. However, as
shown in Fig. 3(b), there is no such clear peak found before air-
borne propagation, and the temporal -3dB width of audio correla-

(a) Calibration UI

iPhone 6s Nexus 6p
0.25

0.02

0.45

0.05

(b) Signal change r(t) of 500g force

Sound
played at

Sound
played at

Figure 10—Touch calibration. The extent of signal changes
caused by the applied force varies with the touch location. Thus,
a one-time touch calibration is made at the 13 marked locations to
compensate the estimated force at different locations.

tion is about 40 samples in this measurement. This phenomenon
is caused by the adoption of windowing, which suppresses the
frequency-domain signal leakage but incurs the time-domain sig-
nal leakage. This 20-sample-ahead sampling heuristic will thus in-
clude both air- and structure-borne propagations. To get a reliable
estimation of the applied force, ForcePhone utilizes the sound
strength when the touch begins as a reference to estimate the sub-
sequent change caused by the force applied later. In the rest of
this paper, we will denote the sound correction at time t as signal
s(t) and the signal at the beginning of a touch as sstart. The subse-
quent force at time t is estimated based on a metric called the signal
changing ratio, r(t) = |(s(t)� sstart)/sstart|. The applied force f (t)
at time t is then determined by a linear regression model with r(t).
Fig. 9 shows a real-world example of applying force to an iPhone
6s placed on a wooden table. We simply visualize the estimated
force as

p
r(t)+ 8r(t); the intuition behind this setting will be dis-

cussed later. In this measurement, there are 3 different types of
touch, each with a different applied force: (1) light touch, (2) hard
touch, and (3) touch with a gradually increasing force. The ground
truth of the applied force can be read from the Apple 3D Touch sen-
sors [3]. As shown in the figure, motion sensors can only detect the
slight movement at the start/end of a touch but are unable to deter-
mine the applied force. Our heuristic based on r(t) captures most
of the force characteristics even when the applied force exceeds the
maximum sensing range of Apple 3D Touch.

Note the calibration between f (t) and r(t) varies with the lo-
cation of force applied on the phone as described in Section 3.
Thus, a preparatory experiment is needed for each phone model
before ForcePhone is activated. However, this calibration is
just a one-time requirement, which is different from other sound-
fingerprinting systems that need laborious training each time before
using the application.

Our current implementation of ForcePhone is calibrated by
using external force sensors. The calibration is done by applying
different amounts of force (up to 1.5kg) at 13 selected locations as
shown in Fig 10(a). The remaining parts of touch screen are cal-
ibrated by interpolating the estimated force at those 13 locations.
Fig. 10(b) shows examples of average signal change ratio, r(t),
when a 500g force is applied to the 13 calibrated locations and
the estimated r(t) over the remaining parts of the phone. As shown
in this figure, r(t) varies with location due to different distances

x104

1

0 400 100 200 300 500

Sample index

M
at

ch
ed

 fi
lte

r r
es

ul
t

2

3

4

5

s(
t)

A
cc

In pocket Taken to hand Squeezed x2

0

2

0

2

Used when walk
x104

Time (sec)
0 6 12

0

8
Accelerometer
Gyroscope

M
ot

io
n

Figure 11—Response of movement and squeeze. Sound corre-
lation changes when the environment changes, such as moving the
phone from the pocket to hands, but it becomes stable quickly when
people hold phones in their hands.

0 10 20 30
Sample index

0

0.5

1

1.5

2

So
un

d
Co

rre
la

tio
n

×105

Over squeeze

Squeeze preparing

Under release

(a) Squeeze response

0 10 20 30
Sample index

0

0.2

0.4

0.6

0.8

1

1.2

Si
gn

al
 c

ha
ng

e
ra

tio

Original
Corrected
Thr high

Thr low
Peak
Valley

(b) Squeeze detection

Figure 12—Squeeze detection example. Received signal is first
normalized by the start and the end of signal amplitudes. Peak is
identified when the corrected signal passing the high threshold and
the signal above the low threshold is considered as part of the peak.

from/to the speaker/microphone and also with the structure of the
phone. In general, touching near the speaker used to play sounds
generates more pronounced signal changes while touching loca-
tions far away from the speaker causes less pronounced changes.
Note that our current calibration is done when the phone is placed
on a static surface, thus ignoring the airborne signal changes due to
the movement of the phone during the touch. However, as we will
discuss later, the added estimation noise due to the phone move-
ment can be tolerated with proper app design since users are also
unaware of the actual amount of force being applied to the phone
unless the response from the phone is sensed. Most participants of
our usability study felt comfortable with the current setting. Im-
proving this calibration process with more advanced sensors and
algorithms is part of our future work.

4.3 Squeeze Detection
It is challenging to detect the squeeze of phone body. Fig. 11

shows an example of the observed signal change when a phone is
taken out of the pocket with hand, used while walking, and then
squeezed twice. As shown in this figure, even though the signal
response of a squeeze is clearly observable, it is also possible to
include lots of noise due to the phone’s movements. To avoid this
noise from large phone movements, we have built a motion detector
based on both accelerometer and gyroscope readings, which turns
off our squeeze detection when there is a large phone movement
and the signal is noisy. We thus set a threshold to turn off the de-
tection during large phone movements (such as taking the phone
out of pocket and transferring it to a hand) but keep the squeeze
function on during slow/small phone movements, such as walking
and using the phone in hand.

Audio + Motion

Force + Action

ForcePhone App
Linux Android iOS

(a) Standalone Mode (b) Client-server Mode

Local Implementation

Figure 13—Implementation overview. ForcePhone has been
implemented as a standalone app on Android via Java Native Inter-
face (JNI). Our iOS implementation requires the force estimation
done at a remote server.

Even though the movement noise is removed by the motion de-
tector, determining if the user squeezes the phone is still harder
than estimating the force applied to the touch screen. Due to the
lack of touch screen input, we don’t know when the squeeze starts.
Moreover, the location of squeeze is inaccessible, thus making it
difficult to perform a proper calibration. To solve these issues, our
squeezable back function is made to respond only to a predefined
squeeze behavior, such as double squeezes applied to the phone’s
left and right body frame as shown in Fig. 2, and the entire squeeze
process is assumed to complete in 1.5 seconds.

Fig. 12(a) shows an example of this predefined squeeze response,
where the applied squeezes cause two significant signal drops at
time 10 and 20. Besides the signal response to the squeeze oper-
ation, there are three characteristics of human squeezing behavior,
which are critical to our design of squeeze detection. First, the
the applied force might decrease slightly before a squeeze, prob-
ably because the users need to relax their hands before squeezing
their phone. After the squeeze, the applied force may also decrease
around the expected force peak. We call this phenomenon over-
squeeze, and think it is caused by the fact that users actually re-
lease part of their fingers/palms from the phone body when they try
to apply more force with the other part(s) of the hand. At the end
of squeeze, the applied force may not return to its initial condition
either, because the users may change their position of holding the
phone during the squeeze.

Squeezes are also detected based on the signal change ratio r(t).
ForcePhone continuously checks each 30-sample received sig-
nal to see if the predefined squeeze pattern has occurred. As the
hand position is likely to change during a squeeze, it is less accu-
rate to estimate the applied force based only on sstart. For example,
the larger drop of the second squeeze shown in Fig. 12(a) might
be caused by a hand position change rather than a larger squeez-
ing force. To account for this phenomenon, we heuristically set the
reference signal based on both the start and end of this 30-sample
signal. This new reference signal varies over time and is defined as
s(t)reference = ((tend � t)sstart + (t � tstart)send)/(tend � tstart). The
signal change ratio r(t) is calculated based on s(t)reference using the
same process as described earlier. Basically, this method estimates
r(t) by weighting the reference signal proportional to the differ-
ence between t and tstart, tend. Fig. 12(b) shows the result of this
correction. After estimating r(t), ForcePhone sets two thresh-
olds to identify the force peaks caused by squeezes. A peak occurs
when r(t) > thrhigh. The following samples where r(t) > thrlow

are defined as parts of this identified peak. This setting is designed
to avoid false identification due to the over squeeze and squeeze

0 200 400 600 800 1000 1200
Sample Index (20Hz)

0

0.5

1

1.5

2

Fo
rc

e
(k

g)

External Sensor
ForcePhone
Apple 3D Touch Sensor

Figure 14—Accuracy of force estimation. 12 touch events with
different amounts of applied force are plotted. The force estimated
by ForcePhone provides high correlation with the ground truth
estimated by using our external force sensors.

preparation. Thus, thrhigh is set larger than the assumed squeeze
preparation force change, and thrlow is set smaller than the over
squeeze force change. A valid squeeze is identified when the num-
ber of detected peaks, the peak widths, and the peak-to-valley ratios
fit a predefined criterion. The performance of our current setting
will be evaluated in Section 6.

5. IMPLEMENTATION
We have implemented ForcePhone on both Android and iOS

devices. As shown in Fig. 7, our Android implementation runs as a
standalone app; the force estimation is implemented as a library in
native code (C++) which we integrate into the app via Java Native
Interface (JNI). On the other hand, the current iOS implementation
requires the force estimation to be done at a remote server using
Matlab. Both implementations provide real-time force estimations.
The delay between recording each chirp and receiving a force esti-
mation is 15ms and 61ms at our local and remote implementations,
respectively. We are currently porting the force estimation library
implemented in C++ to iOS.

One implementation challenge is that ForcePhone needs ac-
curate time synchronization between the phone speaker and micro-
phone to extract valid structure-borne propagations. However, both
iOS and Android platforms don’t meet this real-time requirement
since both take 20–100ms to run the play/record audio command.
To overcome this difficulty, ForcePhone adds 10 pilot sequences
ahead of the used chirps. In this synchronization, ForcePhone
checks if the received signal contains the identical sent pilots, such
as having the same stop time among pilots. In our experiments,
more than 95% of the received pilots have less than 5-sample jit-
ters in their stop time, and 15% of trials on Android experience a
special 960-sample delay before the 4-th pilots. The criterion for
ForcePhone to finish this synchronization test is the existence of
these 10 pilots, and 50% of received pilots have the exact same stop
time, and the last three pilots have less than 5-sample jitters. Once
the pilots are identified correctly, the timing of the last pilot is used
as a reference to extract the structure-borne propagation from the
subsequent chirps as described earlier.

6. EVALUATION
We first measure system performance, such as force estimation

accuracy, overhead, and robustness to noise. We then measure the
user’s benefit of using ForcePhone, such as the probability of an
assigned request being honored or whether the users think it useful.

6.1 Accuracy of Force Estimation
We evaluate the accuracy of force estimation by using the mean

square errors and correlation coefficients where the former repre-
sents the ability to estimate exact force while the later indicates
the capability to learn how force is changed. Fig. 14 shows an ex-
ample of 12 different touches when the iPhone 6s is held in left
hand and the center of the touch screen is pressed with left thumb.
The applied force is estimated by the internal Apple 3D Touch
sensors, external force sensors, and ForcePhone. Since Apple
3D Touch can only provide normalized results and no documented
interpretation of the sensed values is available, we built our own
post-hoc translation based on an external force scale. We found the
sensed value is linear in the applied force, and the maximum value
is reached when 380g is applied.

As shown in Fig. 14, the proprietary sensors used in Apple
3D Touch captures the force change below its maximum (380g in
this case) with high accuracy. Even though ForcePhone esti-
mates the force under 380g with less accuracy, it captures most
force-change characteristics as shown in Fig. 14. Meanwhile,
ForcePhone can estimate the force above 380g without using
any additional sensors.

The mean square error of this in-hand example is 205g and the
correlation coefficient to the force estimated by external sensors is
0.87. Compared to the maximum sensed force up to 1.5kg, this er-
ror is tolerable for most force-sensitive apps as shown later. When
the phone is stationary on a wooden table, the mean square error
falls to 54g and the correlation coefficient increases to 0.91. Note
that the error in estimating the exact value of the applied force could
change if the force is applied in a different way than our calibration
(as we don’t consider the damping coefficient change in our cur-
rent model as introduced in Section 3.) For example, there might
be an estimation drift, so applying a varying force from 500g to
1000g might be estimated wrongly as changing from 400g to 900g
plus the previously-mentioned errors. However, this feature doesn’t
hurt the experience of using ForcePhone because users are not
aware of the exact value of the force applied to a phone unless this
value is shown in the user interface [36]. With a proper user in-
terface design, even though the estimated force is 100g less than
the real force applied to the phone, users can easily learn to ad-
just the applied force for getting a correct response. Actually, even
the proprietary sensors used for 3D Touch have about 100g errors
between the corners of touch screen, and it is suggested not to be
used for estimating exact force [1]. In our current setting, when
the force is applied to the middle area of the phone, the estimated
force (in g) is calculated as f (t) = 15 + 230

p
(r(t)) + 2800r(t) in

iPhone 6s and f (t) = 1900r(t) on Galaxy Note 4. As shown in our
usability study, this setting is adequate for building useful force-
sensitive and squeezable apps. Calibration while considering how
users touch the phone is part of our future work, which could be
accomplished by other grip detection systems like GripSense [15].

6.2 Noise and Interference
The estimation of force based on sound propagation becomes er-

roneous if there is a strong audio noise with a similar structure as
the chirps used in ForcePhone. For example, the mean square
error of ForcePhone can increase from 50g to more than 500g
when the same chirps are played by nearby computers’s speakers.
Even tough this is the natural limitation of any audio-based appli-
cation, it is not the case in most real-life scenarios. In our measure-
ments, ForcePhone is shown to be resistant to: (1) real-life back-
ground audio noise such as music being played in the testing room,

0 20 40 60 80 100 120 140
Time (sec)

0

10

20

N
oi

se
 L

ev
el

 (d
B)

0

1

2

So
un

d
C

or
re

la
tio

n×105

Noise Level
Sound Correlation

Figure 15—Resistance to background noise. Music (i.e., noise)
played by a laptop 20cm away from the device under test has lim-
ited effect on the sound correlation even if the noise level is in-
creased to 20dB higher than the used chirps.

10 20 30 40 50 60
Device distance (cm)

0
20
40
60
80

100
120

Fo
rc

e
st

d
(g

)

Vol 50%
Vol 100%

(a) Inter-device interference

0 10 20 30 40 50
Music volume (%)

20

30

40

50

Fo
rc

e
st

d
(g

)

Original Music
Filtered Music

(b) Self interference

Figure 16—Resistance to inter-device and self interferences.
The variation of sound correlation for each second is used to in-
dicate the error when another device is running ForcePhone or a
music is played on the same device.

(2) inter-device interference from ForcePhone running on an-
other nearby device, and (3) self-interference from the audio played
on the same device. To study the performance degradation caused
only by the audio noise, rather than the force instability of human
hands or other movement noises, we kept the test phone stationary
on a wooden table and no force is applied. The standard deviation
of force estimations is recorded and reported. This estimated force
variation also represents errors when there is a force applied to the
phone if the received noise is modeled as an additive noise.

Particularly, we use an Apple MAC Air or an iPhone 6s placed
on the same surface as test devices. Multiple sets of noises were
played, but no significant differences were observed, so we only
report the results of music-playing noise, i.e., rock music “Jump
– Van Halen” or gaming background music “Spot On”. Since we
place both the test device and the noise source on the same table, the
results account for the vibration coupling and the noise transmitted
through the surface.

We found ForcePhone to be resistant to most external real-life
noises. As shown in Fig. 15, even when the rock music is played
at full-volume by a laptop 20cm away from the test device, the
sound correlation of the used chirps doesn’t change much. This
is because most human (singing or chatting) noises have limited
signals in the 18kHz – 24kHz range. Moreover, this natural noise
usually has only a limited correlation to our 1200-sample chirps.
In this measurement, the increased estimation errors are less than
10g, which does not affect most of ForcePhone’s functionality,
even when the noise level is 20dB higher than the used chirps.

Compared to the uncorrelated noises, ForcePhone is more
sensitive to the noise that has a similar structure as the chirp it uses.
Solutions of this issue are critical in allowing multiple phones to
run ForcePhone in the same environment. To measure this, we
had another device playing the same chirps used by ForcePhone,
but with random stop time between consecutive chirps. This is

Setting Idle Backlight ForcePhone Website Game
Power (mean) 33 856 1160 2564 3692

Table 2—Power consumption (mW). The additional power con-
sumption by ForcePhone is about 304mW, which is small rela-
tive to that of normal phone usage.

designed to learn the average performance when two devices run
ForcePhone simultaneously. As shown in Fig. 16(a), the aver-
age estimated error increases to 110g when the correlated noise is
played at full-volume by another device. This trend is mitigated
when the noise volume is reduced. Since ForcePhone only re-
quires the designed chirps to be played at 50% of full-volume, mul-
tiple devices can run ForcePhone if they are at least 10cm apart
from each other.

In the last scenario, we evaluate whether other audio signals can
be played on the same device when ForcePhone is running. This
capability is critical to the user experience, especially when using
ForcePhone for a game control. We play a game background
music from the same device when ForcePhone is running, and
record the increased estimation error. As shown in Fig. 16(b), when
the music is played by the same speaker at 50% of full-volume,
ForcePhone experiences about 46g of additional estimation er-
ror, which does not affect the core functionality of ForcePhone.
Moreover, when the played music is processed further by using a
15kHz low-pass filter, the imposed error decreased further to 37g.
Note that the current design of ForcePhone allows game mu-
sic to be played at most 50% of full-volume, as the other 50% is
dedicated for ForcePhone’s functionality. This limitation can
be addressed when the phone development kit supports streaming
music/chirps to different speakers (devices usually have 2 or more
speakers, but only one of them can be used at a time).

6.3 Power Consumption
We measure the power consumption of ForcePhone with the

Monsoon Power Monitor [6] on Galaxy Note 4. For the baseline
measurements, we turn off the phone’s radios and estimate the force
through our JNI/C++ local implementation. We ran each scenario
for 20 seconds in 6 different states: 1) idle, with the screen off,
2) backlight, with the screen displaying a white background, 3)
ForcePhone, with the screen on, 4) website surfing, when net-
working is enabled, and 5) video game, “Puzzle&Dragon”. These
measurement results are summarized in Table 2.

Activating the naive implementation of ForcePhone con-
sumes an additional power of 304mW compared to the case when
nothing is executed and background is on. More than 90% of this
power consumption comes from using the hardware of speaker,
microphone, and accelerometer — this is consistent with the re-
sults in [10]. The computation cost of ForcePhone is mini-
mal since it builds a model to estimate the applied force rather
than fingerprinting the sound changes. Note that the ratio of
ForcePhone’s power consumption is dependent on its usage.
For example, though ForcePhone incurs 26% power overhead
(compared to the blacklight case) when it is used to select app op-
tions at home screen, users won’t press this option for a long time
and ForcePhone can be turned off once the selection is done.
If the proposed squeezable back function is used for web surfing,
activating ForcePhone incurs only an 11% power-consumption
overhead, which reduces the life of Note 4’s 12 Wh battery by
about 30min. The percentage overhead is reduced further if
ForcePhone is used for game control or when microphones or
speakers have been activated for other purposes.

This button moves
the ball by force

(b) Experiment Controller (a) Experiment App

This button reports
"no response"

This button sends
task requests

Figure 17—User interface for experiments. Users are requested
to move a ball to the marked red box by applying different amounts
of force to the blue button and squeeze the phone twice for surfing
the previous web page. Action requests are sent, and the results are
recorded by the controller.

2 3 4 5
Number of boxes

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

On table
In hand
Walking

(a) Accuracy

2 3 4 5
Number of boxes

0

0.5

1

1.5

2

De
la

y
fro

m
 to

uc
h

(s
ec

)

On table
In hand
Walking

(b) Delay

Figure 18—Result of controlling a ball with ForcePhone. Re-
sults are averaged over 6 participants. Delay is estimated as the
time between the user presses/releases the button.

6.4 Usability Test
We recruited 6 participants (4 males and 2 females) to test the

usability of ForcePhone by asking them to perform a set of tasks
as shown in Fig. 17(a). Since these 6 participants are students who
are aware of this project, we only tested their ability to complete
the assigned tasks. (The results of the other users’ opinions on
ForcePhone will be provided in the next subsection.) In the first
task, users are asked to move a ball by applying force and stop
it at a randomly-selected red box; the highest box is reached by
applying a 500g force and the ball located at the bottom of boxes
(0g) when the task starts. This experiment follows a similar design
principle as that in [36] to test if the user can effectively control
the force at different levels. Experiments start from stopping the
ball at one of the two big boxes (i.e., only two levels) to one of the
five small boxes. We asked users to perform these tasks at different
positions, such as controlling the phone while it is on a table, while
holding it in hand, or while walking and using it simultaneously.
A remote controller sends requests and records the accuracy and
delay of users’ reaction as shown in Fig. 17(b).

Fig. 18 shows the accuracy (the success rate of moving the ball
into the selected box) and the delay between the user touching the
blue button and finishing the task. The plots show that most partic-
ipants can effectively control ball movement with ForcePhone

when there are only 2 – 3 boxes. This result supports our hard-
pressed option app since the users can easily control the applied
force at two levels with higher than 97% accuracy. When more
than 3 boxes (levels) are provided, users can still achieve higher
than 90% accuracy when the phone is stationary on the table. This
is consistent with our earlier evaluation of estimation accuracy. Al-
though different touch positions might incur additional errors, the

p1 p2 p3 p4 p5 p6
Participant index

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

In hand
Walking
In pocket

(a) Accuracy

p1 p2 p3 p4 p5 p6
Participant index

0

1

2

3

D
el

ay
 (s

ec
)

In hand
Walking
In pocket

(b) Delay

Figure 19—Results of squeeze detection. The accuracy of the last
three participants is increased to more than 90% when the detection
criterion is adjusted after this test.

high correlation between the force estimated by ForcePhone and
the real force is sufficient for users to control the phone effectively.
It is worth noting that moving the ball toward the top/bottom boxes
is easier than the box in the middle; moving the ball to the bottom
or top box has 13% higher accuracy than moving the ball into the
middle box. A similar property was also reported in [36].

On average, users require only 0.7 second to stop the ball at the
correct position when there are two boxes. This delay increases
to 2 seconds when the users attempt moving the ball among 5
boxes while walking. Interestingly, controlling the ball when the
phone is stationary is considered the easiest task, but the partic-
ipants use a slightly less time to complete the 2-box task while
walking. We conjecture this phenomenon is caused by the order
of tests we perform, where the walking test is executed after test-
ing the phone–table and in-hand cases. This property implies that
performance can be improved further once the users become fa-
miliar with ForcePhone. The average accuracy of repeating the
same task on the Galaxy Note 4 is increased by 3%. We think this
minimal improvement is due to the users’ familiarity with this task
rather than the force estimation accuracy. In summary, users can
effectively use ForcePhone to control different levels of applied
force for various scenarios.

In the second experiment, we asked the participants to squeeze
the phone’s body. Once ForcePhone detects the squeeze, the
testing app switches to the previous UI page with a different back-
ground and indicates the page number as shown in Fig. 17(a). Due
to the lack of ground truth (no touch event exists), we asked the
users to click the no response button once the user observes the
applied squeeze not detected. We count the number of times the
squeeze is detected without any instruction from the remote con-
troller as a false positive.

Fig. 19 shows the accuracy and delay for each user. Participant 1
has the highest accuracy and the lowest delay because the detection
setting is tuned according to his own preliminary test and since he
practiced this task more than the other users. The average accuracy
when the phone is held in hand is 90%. The accuracy drops to 82%
when the participants use their phones while walking. Due to the
lack of timing information on when the user applies and stops the
squeeze, we only record the delay between the instruction and the
squeeze feedback (either success or fail). As shown in Fig. 19(b),
the average delay of each squeeze is about 2 seconds. Users experi-
ence low accuracy usually experience a long delay since they have
to wait and then click the “no response” button if the squeeze is not
detected. From the measurements of our previous moving-ball test,
we found users usually need 0.8 second to react to the displayed
instruction, and hence the delay of squeeze detection is expected
no longer than 1.5 seconds.

It is possible to detect a squeeze in users’ pocket, which can be

Questions
Strongly
disagree
/Disagree

No
op-
tion

Strongly
agree
/Agree

Hard-pressed option is helpful 0 0 21
Hard-pressing(3D Touch) is responsive 1 1 19
Hard-pressing is responsive 0 1 20
Ball-moving game is interesting 0 3 18
Moving ball is responsive 2 4 15
Squeezable back is helpful 1 2 18
Squeezing is responsive 2 1 18
False detection is acceptable 4 7 10

Table 3—App study results.

used to turn off alarms or notifications when the phone is in pocket.
However, our measurement shows that its performance depends not
only on how the phone is squeezed but also on the clothing mate-
rial. Tight jeans (e.g., worn by p1 to p3) generally have a better
detection accuracy than loose pants. During this controlled experi-
ment, only 4 false detections are observed. Users’ feedback on the
false positive rate will be presented in the next section.

Based on more than 600 squeeze profiles collected from the 6
participants, we tuned our final squeeze detection setting as fol-
lows. We set the high and low thresholds of squeeze detection to
310g and 175g, respectively. We identify signals as a peak only
when the peak width lies between 2 and 8 samples and the peak-
to-valley ratio is greater than 2.5. By applying these new criteria
to the collected traces, the overall detection accuracies for the last
three participants increase to higher than 90% for both in-hand and
walking scenarios. We used the same setting in our subsequent ap-
plication tests for other participants.

6.5 Users Study of Proposed Apps
For a users study of ForcePhone-based apps, we randomly

chose 21 participants (7 females and 14 males) among a large stu-
dent population at the University of Michigan. All of recruited par-
ticipants own smartphones; only 3 of them have the latest iPhone
6s and knew how to use 3D Touch prior to this test. In contrast
to our previous usability test, these participants were unaware of
ForcePhone and our research group (so they have no initial bias).
We first ask the participants to use the built-in hard-pressed op-
tion of iPhone 6s and then try the same function implemented by
ForcePhone on Galaxy Note 4. We built a fake UI (as shown in
Fig. 2(a)) to make them feel if they were triggering the real option
on Android. We set the testing threshold for enabling options to
340g, which is similar to the iPhone’s. We chose not to make a
blind test by using our iPhone implementation because the current
iOS disables the vibration service when audio is being recorded.
According to our preliminary test, vibrating the phone when the
hard-pressed option is being activated is critical to the user expe-
rience. After trying the hard-pressed option, the users were in-
structed to play a simple game with the moving-ball test app. This
allows us to record the users’ feedback on using ForcePhone as a
continuous UI input. While playing the game, users have to move
the ball into the red box, and the number of boxes was increased
when the users completed the task. Last, we asked the participants
to test our squeezable back app that automatically navigates the
previous UI page when they squeeze the phone twice. The thresh-
old is set based on the results of our previous usability study. It
took about 15 minutes on average, to complete the entire test.

After testing our app, a survey form was filled out by the par-
ticipants, and the results are summarized in Table 3. The ques-

tion mark by “3D Touch” in Table 3 refers to the hard-pressed
option implemented by Apple 3D Touch, while the others re-
fer to ForcePhone. Most users are positive of the proposed
apps and think them helpful. For the hard-press option, most
users think ForcePhone has a comparable performance to Ap-
ple 3D Touch. One of them said ForcePhone is better than 3D
Touch because the vibration in Android is much clearer (stronger)
than iPhone’s, which is not related to the force detection. Only
3 users think iPhone’s performance is better, but still acknowl-
edge ForcePhone is responsive enough for the hard-pressed op-
tion app. This indicates that ForcePhone can handle simple
tasks with a comparable performance as adding proprietary sen-
sors. Moreover, most users feel the squeezable back app is helpful,
which is a unique capability of ForcePhone.

Most users regard that controlling the ball based on the applied
force is relatively difficult, but still were able to control the ball.
Two users think our test setting is too sensitive, making it difficult
to move the ball. We also discovered some errors caused by apply-
ing a large initial force and releasing the button immediately, which
was not the intended case for ForcePhone. After the users are
instructed to move the ball by gradually applying force, they are
able to control the ball with ForcePhone. The squeezable back
app received a similar rating as the ball-moving game. In our other
survey, 16 users indicated difficulty in clicking the app back but-
ton when operating the phone with one hand which supports the
design of our squeezable back app. Most users think our current
parameter setting tuned by previous 6 participants is responsive
and acceptable. A half of users experienced false detections when
they moved the phone from one hand to the other. During the test,
none of users heard the sound used in ForcePhone, so no user
annoyance. The test locations were close to a cafe crowded with
students, but ForcePhone was robust to human noises. Most
common comments from the users are “cool idea” and “useful’.
We plan to have extensive and large-scale tests before releasing
ForcePhone to public.

7. DISCUSSION
ForcePhone has been shown to be able to expand user input

interfaces by using only built-in sensors. Several demonstrative
apps have been developed and tested, but there are many other use-
cases of ForcePhone. Discussed below are the limitations of
current ForcePhone and some of possible directions of our fu-
ture work.

7.1 Limitations
As our evaluation results show, ForcePhone’s force estima-

tion includes noise from object contacts and human movements,
calling for an app design to eliminate this noise. An extreme exam-
ple that breaks ForcePhone’s functionality is to activate the force
estimation by placing the phone on a table then quickly moving and
holding it in hand. However, this limitation of ForcePhone can
be avoided by a proper app design. For example, the hard-pressed
option app only needs force measurements within a short period
of time (e.g., 2 seconds) and is inactivated if the phone is being
moved. Apps like drawing lines with different line styles/thickness
by applying different amounts of force is not suitable for the current
ForcePhone as it is more probable for the user to (unintention-
ally) change the environment during the line drawing. But selection
of thickness by applying different amounts of force is possible since
it is akin to our ball-moving test. In our measurement, to achieve
accurate and long-lasting force sensing, ForcePhone needs the

(b) Hand-trainer app (c) Wearable app (a) Drawing app

by ForcePhone

by 3D Touch

Figure 20—Potential usage of ForcePhone.

phone to be fixed at a certain location. For example, Fig. 20(a)
demonstrates the above-mentioned force-sensitive drawing app by
attaching the phone on a stand.

In our squeezable back app, missed detections occur when the
detection is intentionally turned off upon identification of extensive
movements, such as sudden turns or stops. This is a safety mecha-
nism for ForcePhone to avoid false detections, but the users are
not aware of this. One way to avoid this misunderstanding and im-
prove the user experience is to provide a feedback when the squeeze
detection is temporarily turned off. For example, the background
of website or the title bar can be dimmed slightly when the squeez-
able back app is deactivated. Studying the users’ reaction to this
new UI design is part of our future work.

While the touch location near the speaker/microphone used to
play/record sounds is found more sensitive to the applied force
(i.e., making more pronounced signal changes), the middle area of
touch screen usually provides more reliable force estimation. For
example, when more than 1.2kg force is applied to the top area
of iPhone 6s, the received signals jump quickly and the relation
between f (t) and r(t) breaks down. We suspect this phenomenon
is due to the pressuring of phone’s microphone and other internal
components. So, we suggest to limit the estimated force to 500g for
consistent performance, even though certain locations can sense the
force up to 3kg. This phenomenon also causes the estimated signal
strength s(t) at certain locations to rise when the force is applied.
Most of these situations caused by pressing the phone can be com-
pensated by our calibration of r(t) and the estimation constraints
caused by this problem will likely be addressed in the near future
since commodity phones start to increase the number and fidelity
of speakers/microphones. For example, when multiple speaker–
microphone pairs are used to sense force interactively, the locations
yielding erroneous estimations for a single microphone–speaker
pair can be corrected by the other microphones and speakers. We
should also note that, as shown in our measurements, these minor
issues incur minimal annoyance to users when ForcePhone is
properly applied.

7.2 Potential Applications of ForcePhone
The participants of our usability study suggested many potential

uses of ForcePhone after trying the proposed apps. Of them,
two most promising and interesting uses are mobile health apps
and force-sensitive wearable devices.

Mobile phones or wearables are good candidate platforms for
mobile health apps since people carry them all time. For exam-
ple, systems of notifying/requesting users to walk or excise are
now built in most commodity phones [2, 8]. Researchers have also
shown the benefits of drinking more water via mobile apps [11].
ForcePhone can provide a new function/capability of these sys-
tems because it can determine how hard a user squeezes/touches
the phone. As shown in Fig. 20(b), this functionality can be used

as a replacement of force-finger-trainer that is helpful for the peo-
ple with disability and those who use hands and fingers excessively
for their work, e.g., computer programmers.
ForcePhone can also be implemented in wearable devices that

have even less space for user inputs than smartphones. Unfortu-
nately, current wearable devices usually have less sensing capabili-
ties than smartphones, especially for the microphone sensitivity and
sample rate. For example, Samsung Gear S (watch) can only sup-
port an audio sample rate up to 32kHz, which is inadequate for the
current design of ForcePhone. Apple Watch hardware is found
to be the best to implement ForcePhone, but its current API does
not yet support data reading from the audio queue and process au-
dio data in real time. In future, we expect the sensing capability of
wearables to improve so that ForcePhone can be implemented
and used for numerous apps.

8. CONCLUSION
We have proposed ForcePhone, an inexpensive solution

that adds a force-sensitive and squeezable interface to com-
modity phones without any hardware modification/addition.
ForcePhone has been implemented on iOS and Android plat-
forms, and several apps based on its functionality have been de-
veloped and tested. Our evaluation has shown ForcePhone to
provide comparable performance as augmented proprietary force
sensors and to be robust to most real-life noises. The proposed apps
are easy to use with higher than 90% accuracy and minimal over-
heads. In future, we plan to test ForcePhone on a wide range of
devices and scenarios.

ACKNOWLEDGEMENTS

The authors would like to thank Karl Grosh, Chuming Zhao,
Kassem Fawaz, Lung-Pan Cheng, Chuan-Che Huang, Ming-Yuan
Yu, Chen-Ming Chang, Meng-Ting Chung and the anonymous re-
viewers and the shepherd for constructive comments on the earlier
versions of this paper.

9. REFERENCES

[1] Apple doesn’t want you weighing things with your iPhone
just yet. http://www.theverge.com/2015/10/28/9625340/
iphone-6s-gravity-app-digital-scales.

[2] Apple Health App. http://www.apple.com/ios/health/.
[3] Apple iPhone 6s 3D Touch.

http://www.apple.com/iphone-6s/3d-touch/.
[4] ForcePhone Demo Video. https://youtu.be/cYxr2wnQVMU.
[5] Interlink 402 FSR.

http://www.interlinkelectronics.com/FSR402.php.
[6] Monsoon Power Monitor.

http://www.msoon.com/LabEquipment/PowerMonitor/.
[7] Polytec OFV-303 Laser Vibrometer. http:

//www.polytec.com/us/products/vibration-sensors/.
[8] Samsung S Health App. http://shealth.samsung.com/.
[9] Why Apple’s iPhone SE lacks 3D Touch technology.

http://appleinsider.com/articles/16/03/23/why-
apples-iphone-se-lacks-3d-touch-technology.

[10] F. Ben Abdesslem, A. Phillips, and T. Henderson. Less is
more: Energy-efficient mobile sensing with senseless. In
Proceedings of ACM MobiHeld ’09, pages 61–62.

[11] M.-C. Chiu, S.-P. Chang, Y.-C. Chang, H.-H. Chu, C. C.-H.
Chen, F.-H. Hsiao, and J.-C. Ko. Playful bottle: A mobile

social persuasion system to motivate healthy water intake. In
Proceedings of ACM UbiComp ’09, pages 185–194.

[12] S. Elliott. Active control of structure-borne noise. Journal of
Sound and Vibration, 177(5):651 – 673, 1994.

[13] A. Girouard, J. Lo, M. Riyadh, F. Daliri, A. K. Eady, and
J. Pasquero. One-handed bend interactions with deformable
smartphones. In Proceedings of ACM CHI ’15, pages
1509–1518, 2015.

[14] M. Goel, B. Lee, M. T. Islam Aumi, S. Patel, G. Borriello,
S. Hibino, and B. Begole. Surfacelink: Using inertial and
acoustic sensing to enable multi-device interaction on a
surface. In Proceedings of ACM CHI ’14, pages 1387–1396.

[15] M. Goel, J. Wobbrock, and S. Patel. Gripsense: Using
built-in sensors to detect hand posture and pressure on
commodity mobile phones. In Proceedings of ACM UIST
’12, pages 545–554.

[16] F. Harris. On the use of windows for harmonic analysis with
the discrete fourier transform. Proceedings of the IEEE,
66(1):51–83, 1978.

[17] C. Harrison, J. Schwarz, and S. E. Hudson. Tapsense:
Enhancing finger interaction on touch surfaces. In
Proceedings of ACM UIST ’11, pages 627–636.

[18] C. Harrison, D. Tan, and D. Morris. Skinput: Appropriating
the body as an input surface. In Proceedings of ACM CHI
’10, pages 453–462.

[19] S. Heo and G. Lee. Forcetap: Extending the input vocabulary
of mobile touch screens by adding tap gestures. In
Proceedings of ACM MobileHCI ’11, pages 113–122.

[20] R. Hooke and J. Yonge. Lectures de Potentia Restitutiva, Or
of Spring Explaining the Power of Springing Bodies... John
Martyn, 1931.

[21] S. Hwang, A. Bianchi, and K.-y. Wohn. Vibpress: Estimating
pressure input using vibration absorption on mobile devices.
In Proceedings of ACM MobileHCI ’13, pages 31–34, 2013.

[22] S. Hwang and K.-y. Wohn. Pseudobutton: Enabling
pressure-sensitive interaction by repurposing microphone on
mobile device. In ACM CHI ’12 Extended Abstracts, pages
1565–1570.

[23] Y.-H. Kim. Sound propagation: An impedance based
approach. Wiley, 2010.

[24] G. Laput, E. Brockmeyer, M. Mahler, S. E. Hudson, and
C. Harrison. Acoustruments: Passive, acoustically-driven,
interactive controls for handheld devices. In Proceedings
ACM CHI ’15.

[25] P. Lazik and A. Rowe. Indoor pseudo-ranging of mobile
devices using ultrasonic chirps. In Proceedings of ACM
SenSys ’12, pages 391–392.

[26] Q. Li, J. long Han, and D. jun Wu. Survey on predicting and
controlling of structure-borne noise from rail transit bridges.
In Electric Technology and Civil Engineering (ICETCE),
2011 International Conference on, pages 4559–4563.

[27] S. Low, Y. Sugiura, D. Lo, and M. Inami. Pressure detection
on mobile phone by camera and flash. In Proceedings of
ACM AH ’14, pages 11:1–11:4.

[28] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell. SoundSense: Scalable Sound Sensing for
People-centric Applications on Mobile Phones. In
Proceedings of ACM MobiSys ’09, pages 165–178.

[29] P. Marti and I. Iacono. Evaluating the experience of use of a
squeezable interface. In Proceedings of CHItaly ’15, pages

42–49.
[30] R. Nandakumar, S. Gollakota, and N. Watson. Contactless

sleep apnea detection on smartphones. In Proceedings of
ACM MobiSys ’15, pages 45–57.

[31] S. Nirjon, R. F. Dickerson, P. Asare, Q. Li, D. Hong, J. A.
Stankovic, P. Hu, G. Shen, and X. Jiang. Auditeur: A
mobile-cloud service platform for acoustic event detection
on smartphones. In Proceeding of ACM MobiSys ’13, pages
403–416.

[32] M. Ono, B. Shizuki, and J. Tanaka. Sensing touch force
using active acoustic sensing. In Proceedings of ACM TEI
’15, pages 355–358.

[33] M. Ono, B. Shizuki, and J. Tanaka. Touch & activate:
Adding interactivity to existing objects using active acoustic
sensing. In Proceedings of ACM UIST ’13, pages 31–40.

[34] E. W. Pedersen and K. Hornbæk. Expressive touch: Studying
tapping force on tabletops. In Proceedings of ACM CHI ’14,
pages 421–430.

[35] C. J. Plack. The sense of hearing. Lawrence Erlbaum
Associates, Inc., 2005.

[36] G. Ramos, M. Boulos, and R. Balakrishnan. Pressure
widgets. In Proceedings of CHI ’04, pages 487–494.

[37] S. Salemian, M. Jamshihi, and A. Rafiee. Radar pulse
compression techniques. In Proceedings of WSEAS AEE’05,
pages 203–209.

[38] Y.-C. Tung and K. G. Shin. Echotag: Accurate
infrastructure-free indoor location tagging with smartphones.
In Proceedings of ACM MobiCom ’15, pages 525–536.

[39] H. Zheng, J. Mou, W. Lin, and E. Ong. Modeling and
prediction of structure-borne seek noise of hard disk drives.
Magnetics, IEEE Transactions on, 45(11):4933–4936, 2009.

